In seed plants, 1‐aminocyclopropane‐1‐carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene‐independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. In Here, we isolated an ACC‐insensitive mutant (Mp We examined the physiological functions of Mp These findings reveal that MpLHT1 serves as an ACC and amino acid transporter in
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Arabidopsis thaliana , ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants,LHT homologs have been uncharacterized.ain ) that is defective in ACC uptake in the liverwortMarchantia polymorpha . Mpain contained a frameshift mutation (1 bp deletion) in the MpLHT1 coding sequence, and was complemented by expression of a wild‐type MpLHT1 transgene. Additionally, ACC insensitivity was re‐created in CRISPR/Cas9‐Mplht1 knockout mutants. We found that MpLHT1 can also transportl ‐hydroxyproline andl ‐histidine.LHT1 in vegetative growth and reproduction based on mutant phenotypes. Mpain and Mplht1 plants were smaller and developed fewer gemmae cups compared to wild‐type plants. Mplht1 mutants also had reduced fertility, and archegoniophores displayed early senescence.M. polymorpha and has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids inM. polymorpha growth and reproduction. -
Abstract The phytohormone ethylene has numerous effects on plant growth and development. Its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is a non-proteinogenic amino acid produced by ACC SYNTHASE (ACS). ACC is often used to induce ethylene responses. Here, we demonstrate that ACC exhibits ethylene-independent signaling in
Arabidopsis thaliana reproduction. By analyzing anacs octuple mutant with reduced seed set, we find that ACC signaling in ovular sporophytic tissue is involved in pollen tube attraction, and promotes secretion of the pollen tube chemoattractant LURE1.2. ACC activates Ca2+-containing ion currents via GLUTAMATE RECEPTOR-LIKE (GLR) channels in root protoplasts. In COS-7 cells expressing mossPp GLR1, ACC induces the highest cytosolic Ca2+elevation compared to all twenty proteinogenic amino acids. In ovules, ACC stimulates transient Ca2+elevation, and Ca2+influx in octuple mutant ovules rescues LURE1.2 secretion. These findings uncover a novel ACC function and provide insights for unraveling new physiological implications of ACC in plants. -
Summary We investigated the molecular basis and physiological implications of anion transport during pollen tube (
PT ) growth inArabidopsis thaliana (Col‐0).Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteins
At SLAH 3,At ALMT 12,At TMEM 16 andAt CCC as the putative anion transporters responsible for these currents.At CCC ‐GFP was observed at the shank andAt SLAH 3‐GFP at the tip and shank of thePT plasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPT s with an anion vibrating probe were significantly lower inslah3 −/− andccc −/− mutants, but unaffected inalmt12 −/− andtmem16 −/− . We further characterised the effect ofpH andGABA by patch clamp. Strong regulation by extracellularpH was observed in the wild‐type, but not intmem16 −/− . Our results are compatible withAt TMEM 16 functioning as an anion/H+cotransporter and therefore, as a putativepH sensor.GABA presence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12 −/− and (2) reduced the current inAt ALMT 12 transfectedCOS ‐7 cells, strongly suggesting the direct interaction ofGABA withAt ALMT12.Our data show that
At SLAH 3 andAt CCC activity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPT growth modulation bypH ,GABA , and [Ca2+]cytthrough anionic transporters. -
Nitric oxide (NO) is a key signaling molecule that regulates diverse biological processes in both animals and plants. In animals, NO regulates vascular wall tone, neurotransmission and immune response while in plants, NO is essential for development and responses to biotic and abiotic stresses [1–3]. Interestingly, NO is involved in the sexual reproduction of both animals and plants mediating physiological events related to the male gamete [2, 4]. In animals, NO stimulates sperm motility [4] and binding to the plasma membrane of oocytes [5] while in plants, NO mediates pollen-stigma interactions and pollen tube guidance [6, 7]. NO generation in pollen tubes (PTs) has been demonstrated [8] and intracellular responses to NO include cytosolic Ca2+ elevation, actin organization, vesicle trafficking and cell wall deposition [7, 9]. However, the NO-responsive proteins that mediate these responses are still elusive. Here we show that PTs of Arabidopsis lacking the pollen-specific Diacylglycerol Kinase 4 (DGK4) grow slower and become insensitive to NO-dependent growth inhibition and re-orientation responses. Recombinant DGK4 protein yields NO-responsive spectral and catalytic changes in vitro which are compatible with a role in NO perception and signaling in PTs. NO is a fast, diffusible gas and, based on our results, we hypothesize it could serve in long range signaling and/or rapid cell-cell communication functions mediated by DGK4 downstream signaling during the progamic phase of angiosperm reproduction.more » « less