skip to main content


Search for: All records

Award ID contains: 1715070

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellar mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We study the escape fraction of ionizing photons (fesc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass Mhalo ∼ 1010 and $10^{11}\, \mathrm{ M}_{\odot }$ (stellar mass M* ∼ 107 and $10^9\, \mathrm{ M}_{\odot }$) at z = 5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17–39 per cent of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute fesc from cluster stars and non-cluster stars formed during a starburst over ∼100 Myr in each galaxy. We find that the averaged fesc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low fesc in the first few Myr, presumably because they form preferentially in more extreme environments with high optical depths; the fesc increases later as feedback starts to destroy the natal cloud. On the other hand, some non-cluster stars formed between cluster complexes or in the compressed shells at the front of a superbubble can also have high fesc. We find that cluster stars on average have comparable fesc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiencies in high-redshift galaxies and thus proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization. 
    more » « less
  3. null (Ed.)
    ABSTRACT We describe three different methods for exploring the hydrogen reionization epoch using fast radio bursts (FRBs) and provide arguments for the existence of FRBs at high redshift (z). The simplest way, observationally, is to determine the maximum dispersion measure (DMmax) of FRBs for an ensemble that includes bursts during the reionization. The DMmax provides information regarding reionization much like the optical depth of the cosmic microwave background to Thomson scattering does, and it has the potential to be more accurate than constraints from Planck, if DMmax can be measured to a precision better than 500 pccm−3. Another method is to measure redshifts of about 40 FRBs between z of 6 and 10 with ${\sim}10{{\ \rm per\ cent}}$ accuracy to obtain the average electron density in four different z-bins with ${\sim}4{{\ \rm per\ cent}}$ accuracy. These two methods do not require knowledge of the FRB luminosity function and its possible redshift evolution. Finally, we show that the reionization history is reflected in the number of FRBs per unit DM, given a fluence limited survey of FRBs that includes bursts during the reionization epoch; we show using FIRE simulations that the contribution to DM from the FRB host galaxy and circumgalactic medium during the reionization era is a small fraction of the observed DM. This third method requires no redshift information but does require knowledge of the FRB luminosity function. 
    more » « less
  4. null (Ed.)
    ABSTRACT We argue that charged dust grains could significantly impact the confinement and transport of galactic cosmic rays. For sub-GeV to ∼103 GeV cosmic rays, small-scale parallel Alfvén waves, which isotropize cosmic rays through gyro-resonant interactions, are also gyro-resonant with charged grains. If the dust is nearly stationary, as in the bulk of the interstellar medium, Alfvén waves are damped by dust. This will reduce the amplitude of Alfvén waves produced by the cosmic rays through the streaming instability, thus enhancing cosmic ray transport. In well-ionized regions, the dust damping rate is larger by a factor of ∼10 than other mechanisms that damp parallel Alfvén waves at the scales relevant for ∼GeV cosmic rays, suggesting that dust could play a key role in regulating cosmic ray transport. In astrophysical situations in which the dust moves through the gas with super-Alfvénic velocities, Alfvén waves are rendered unstable, which could directly scatter cosmic rays. This interaction has the potential to create a strong feedback mechanism where dust, driven through the gas by radiation pressure, then strongly enhances the confinement of cosmic rays, increasing their capacity to drive outflows. This mechanism may act in the circumgalactic medium around star-forming galaxies and active galactic nuclei. 
    more » « less
  5. ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$10^{10}\, \mathrm{ M}_{\odot }$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $\rm [Z/H]$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies. 
    more » « less