skip to main content


Title: Exploring the epoch of hydrogen reionization using FRBs
ABSTRACT We describe three different methods for exploring the hydrogen reionization epoch using fast radio bursts (FRBs) and provide arguments for the existence of FRBs at high redshift (z). The simplest way, observationally, is to determine the maximum dispersion measure (DMmax) of FRBs for an ensemble that includes bursts during the reionization. The DMmax provides information regarding reionization much like the optical depth of the cosmic microwave background to Thomson scattering does, and it has the potential to be more accurate than constraints from Planck, if DMmax can be measured to a precision better than 500 pccm−3. Another method is to measure redshifts of about 40 FRBs between z of 6 and 10 with ${\sim}10{{\ \rm per\ cent}}$ accuracy to obtain the average electron density in four different z-bins with ${\sim}4{{\ \rm per\ cent}}$ accuracy. These two methods do not require knowledge of the FRB luminosity function and its possible redshift evolution. Finally, we show that the reionization history is reflected in the number of FRBs per unit DM, given a fluence limited survey of FRBs that includes bursts during the reionization epoch; we show using FIRE simulations that the contribution to DM from the FRB host galaxy and circumgalactic medium during the reionization era is a small fraction of the observed DM. This third method requires no redshift information but does require knowledge of the FRB luminosity function.  more » « less
Award ID(s):
2009619 1715070
NSF-PAR ID:
10269533
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
502
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5134 to 5146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Fast radio bursts (FRBs) are extremely powerful sources of radio waves observed at cosmological distances. We use a sophisticated model of FRB observations – presented in detail in a companion paper – to fit FRB population parameters using large samples of FRBs detected by ASKAP and Parkes, including seven sources with confirmed host galaxies. Our fitted parameters demonstrate that the FRB population evolves with redshift in a manner consistent with, or faster than, the star formation rate (SFR), ruling out a non-evolving population at better than 98 per cent CL (depending on modelling uncertainties). Our estimated maximum FRB energy is $\log _{10} E_{\rm max} [{\rm erg}] = 41.70_{-0.06}^{+0.53}$ (68 per cent CL) assuming a 1 GHz emission bandwidth, with slope of the cumulative luminosity distribution $\gamma =-1.09_{-0.10}^{+0.14}$. We find a log-mean host DM contribution of $129_{-48}^{+66}$ pc cm−3 on top of a typical local (interstellar medium and halo) contribution of ∼80 pc cm−3, which is higher than most literature values. These results are insensitive to assumptions of the FRB spectral index, and are consistent with the model of FRBs arising as the high-energy limit of magnetar bursts, but allow for FRB progenitors that evolve faster than the SFR. 
    more » « less
  2. ABSTRACT We develop a sophisticated model of fast radio burst (FRB) observations, accounting for the intrinsic cosmological gas distribution and host galaxy contributions, and give the most detailed account yet of observational biases due to burst width, dispersion measure, and the exact telescope beamshape. Our results offer a significant increase in both accuracy and precision beyond those previously obtained. Using results from ASKAP and Parkes, we present our best-fitting FRB population parameters in a companion paper. Here, we consider in detail the expected and fitted distributions in redshift, dispersion measure, and signal to noise. We estimate that the unlocalized ASKAP FRBs arise from z < 0.5, with between a third and a half within z < 0.1. Our predicted source-counts (‘logN–logS’) distribution confirms previous indications of a steepening index near the Parkes detection threshold of 1 Jy ms. We find no evidence for a minimum FRB energy, and rule out Emin > 1039.0 erg at 90 per cent C.L. Importantly, we find that above a certain DM, observational biases cause the Macquart (DM–z) relation to become inverted, implying that the highest-DM events detected in the unlocalized Parkes and ASKAP samples are unlikely to be the most distant. More localized FRBs will be required to quantitatively estimate this effect, though its cause is a well-understood observational bias. Works assuming a 1–1 DM–z relation may therefore derive erroneous results. Our analysis of errors suggests that limiting factors in our analysis are understanding of FRB spectral behaviour, sensitivity response of search experiments, and the treatment of the repeating population and luminosity function. 
    more » « less
  3. ABSTRACT

    We measure escape fractions, fesc, of ionizing radiation from galaxies in the sphinx suite of cosmological radiation-hydrodynamical simulations of reionization, resolving haloes with $M_{\rm vir}\gtrsim 7.5 \times 10^7 \ {\rm {M}_{\odot }}$ with a minimum cell width of ≈10 pc. Our new and largest 20 co-moving Mpc wide volume contains tens of thousands of star-forming galaxies with halo masses up to a few times 1011 M⊙. The simulated galaxies agree well with observational constraints of the ultraviolet (UV) luminosity function in the Epoch of Reionization. The escape fraction fluctuates strongly in individual galaxies over time-scales of a few Myr, due to its regulation by supernova and radiation feedback, and at any given time a tiny fraction of star-forming galaxies emits a large fraction of the ionizing radiation escaping into the intergalactic medium. Statistically, fesc peaks in intermediate-mass, intermediate-brightness, and low-metallicity galaxies (M* ≈ 107 M⊙, M1500 ≈ −17, Z ≲ 5 × 10−3 Z⊙), dropping strongly for lower and higher masses, brighter and dimmer galaxies, and more metal-rich galaxies. The escape fraction correlates positively with both the short-term and long-term specific star formation rate. According to sphinx, galaxies too dim to be yet observed, with ${M_{1500}}\gtrsim -17$, provide about 55 per cent of the photons contributing to reionization. The global averaged fesc naturally decreases with decreasing redshift, as predicted by UV background models and low-redshift observations. This evolution is driven by decreasing specific star formation rates over cosmic time.

     
    more » « less
  4. null (Ed.)
    ABSTRACT Planck data provide precise constraints on cosmological parameters when assuming the base ΛCDM model, including a 0.17 per cent measurement of the age of the Universe, $t_0=13.797 \pm 0.023\, {\rm Gyr}$. However, the persistence of the ‘Hubble tension’ calls the base ΛCDM model’s completeness into question and has spurred interest in models such as early dark energy (EDE) that modify the assumed expansion history of the Universe. We investigate the effect of EDE on the redshift–time relation z↔t and find that it differs from the base ΛCDM model by at least ${\approx } 4{{\ \rm per\ cent}}$ at all t and z. As long as EDE remains observationally viable, any inferred t ← z or z ← t quoted to a higher level of precision do not reflect the current status of our understanding of cosmology. This uncertainty has important astrophysical implications: the reionization epoch – 10 > z > 6 – corresponds to disjoint lookback time periods in the base ΛCDM and EDE models, and the EDE value of t0 = 13.25 ± 0.17 Gyr is in tension with published ages of some stars, star clusters, and ultrafaint dwarf galaxies. However, most published stellar ages do not include an uncertainty in accuracy (due to, e.g. uncertain distances and stellar physics) that is estimated to be $\sim 7\!-\!10{{\ \rm per\ cent}}$, potentially reconciling stellar ages with $t_{0,\rm EDE}$. We discuss how the big data era for stars is providing extremely precise ages ($\lt 1{{\ \rm per\ cent}}$) and how improved distances and treatment of stellar physics such as convection could result in ages accurate to $4\!-\!5{{\ \rm per\ cent}}$, comparable to the current accuracy of t↔z. Such precise and accurate stellar ages can provide detailed insight into the high-redshift Universe independent of a cosmological model. 
    more » « less
  5. Abstract

    We present a sample of nine fast radio bursts (FRBs) from which we derive magnetic field strengths of the host galaxies represented by normal,z< 0.5 star-forming galaxies with stellar massesM*≈ 108–1010.5M. We find no correlation between the FRB rotation measure (RM) and redshift, which indicates that the RM values are due mostly to the FRB host contribution. This assertion is further supported by a significant positive correlation (Spearman test probabilityPS< 0.05) found between the RM and the estimated host dispersion measure (DMhost; with Spearman rank correlation coefficientrS= +0.75). For these nine galaxies, we estimate their magnetic field strengths projected along the sight line ∣B∣, finding a low median value of 0.5μG. This implies the magnetic fields of our sample of hosts are weaker than those characteristic of the solar neighborhood (≈6μG), but relatively consistent with a lower limit on the observed range of ≈2–10μG for star-forming disk galaxies, especially as we consider reversals in theB-field, and that we are only probing B. We compare to RMs from simulated galaxies of the Auriga project—magneto-hydrodynamic cosmological zoom simulations—and find that the simulations predict the observed values to within a 95% confidence interval. Upcoming FRB surveys will provide hundreds of new FRBs with high-precision localizations, RMs, and imaging follow-up to support further investigation into the magnetic fields of a diverse population ofz< 1 galaxies.

     
    more » « less