skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1715439

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An unconventional approach for optimal stopping under model ambiguity is introduced. Besides ambiguity itself, we take into account howambiguity‐aversean agent is. This inclusion of ambiguity attitude, via an‐maxmin nonlinear expectation, renders the stopping problem time‐inconsistent. We look for subgame perfect equilibrium stopping policies, formulated as fixed points of an operator. For a one‐dimensional diffusion with drift and volatility uncertainty, we show that any initial stopping policy will converge to an equilibrium through a fixed‐point iteration. This allows us to capture much more diverse behavior, depending on an agent's ambiguity attitude, beyond the standard worst‐case (or best‐case) analysis. In a concrete example of real options valuation under model ambiguity, all equilibrium stopping policies, as well as thebestone among them, are fully characterized under appropriate conditions. It demonstrates explicitly the effect of ambiguity attitude on decision making: the more ambiguity‐averse, the more eager to stop—so as to withdraw from the uncertain environment. The main result hinges on a delicate analysis of continuous sample paths in the canonical space and the capacity theory. To resolve measurability issues, a generalized measurable projection theorem, new to the literature, is also established. 
    more » « less
  2. Abstract For an infinite‐horizon continuous‐time optimal stopping problem under nonexponential discounting, we look for anoptimal equilibrium, which generates larger values than any other equilibrium does on theentirestate space. When the discount function is log subadditive and the state process is one‐dimensional, an optimal equilibrium is constructed in a specific form, under appropriate regularity and integrability conditions. Although there may exist other optimal equilibria, we show that they can differ from the constructed one in very limited ways. This leads to a sufficient condition for the uniqueness of optimal equilibria, up to some closedness condition. To illustrate our theoretic results, a comprehensive analysis is carried out for three specific stopping problems, concerning asset liquidation and real options valuation. For each one of them, an optimal equilibrium is characterized through an explicit formula. 
    more » « less
  3. Abstract We consider the problem of stopping a diffusion process with a payoff functional that renders the problem time‐inconsistent. We study stopping decisions of naïve agents who reoptimize continuously in time, as well as equilibrium strategies of sophisticated agents who anticipate but lack control over their future selves' behaviors. When the state process is one dimensional and the payoff functional satisfies some regularity conditions, we prove that any equilibrium can be obtained as a fixed point of an operator. This operator represents strategic reasoning that takes the future selves' behaviors into account. We then apply the general results to the case when the agents distort probability and the diffusion process is a geometric Brownian motion. The problem is inherently time‐inconsistent as the level of distortion of a same event changes over time. We show how the strategic reasoning may turn a naïve agent into a sophisticated one. Moreover, we derive stopping strategies of the two types of agent for various parameter specifications of the problem, illustrating rich behaviors beyond the extreme ones such as “never‐stopping” or “never‐starting.” 
    more » « less
  4. null (Ed.)
    A new definition of continuous-time equilibrium controls is introduced. As opposed to the standard definition, which involves a derivative-type operation, the new definition parallels how a discrete-time equilibrium is defined and allows for unambiguous economic interpretation. The terms “strong equilibria” and “weak equilibria” are coined for controls under the new and standard definitions, respectively. When the state process is a time-homogeneous continuous-time Markov chain, a careful asymptotic analysis gives complete characterizations of weak and strong equilibria. Thanks to the Kakutani–Fan fixed-point theorem, the general existence of weak and strong equilibria is also established under an additional compactness assumption. Our theoretic results are applied to a two-state model under nonexponential discounting. In particular, we demonstrate explicitly that there can be incentive to deviate from a weak equilibrium, which justifies the need for strong equilibria. Our analysis also provides new results for the existence and characterization of discrete-time equilibria under infinite horizon. 
    more » « less
  5. null (Ed.)