A 1992 conjecture of Alon and Spencer says, roughly, that the ordinary random graphGn,1/2typically admits a covering of a constant fraction of its edges by edge‐disjoint, nearly maximum cliques. We show that this is not the case. The disproof is based on some (partial) understanding of a more basic question: forandA1,…,Atchosen uniformly and independently from thek‐subsets of {1,…,n}, what can one say aboutOur main concern is trying to understand how closely the answers to this and a related question about matchings follow heuristics gotten by pretending that certain (dependent) choices are made independently.
more »
« less
Optimal stopping under model ambiguity: A time‐consistent equilibrium approach
Abstract An unconventional approach for optimal stopping under model ambiguity is introduced. Besides ambiguity itself, we take into account howambiguity‐aversean agent is. This inclusion of ambiguity attitude, via an‐maxmin nonlinear expectation, renders the stopping problem time‐inconsistent. We look for subgame perfect equilibrium stopping policies, formulated as fixed points of an operator. For a one‐dimensional diffusion with drift and volatility uncertainty, we show that any initial stopping policy will converge to an equilibrium through a fixed‐point iteration. This allows us to capture much more diverse behavior, depending on an agent's ambiguity attitude, beyond the standard worst‐case (or best‐case) analysis. In a concrete example of real options valuation under model ambiguity, all equilibrium stopping policies, as well as thebestone among them, are fully characterized under appropriate conditions. It demonstrates explicitly the effect of ambiguity attitude on decision making: the more ambiguity‐averse, the more eager to stop—so as to withdraw from the uncertain environment. The main result hinges on a delicate analysis of continuous sample paths in the canonical space and the capacity theory. To resolve measurability issues, a generalized measurable projection theorem, new to the literature, is also established.
more »
« less
- Award ID(s):
- 1715439
- PAR ID:
- 10450864
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Mathematical Finance
- Volume:
- 31
- Issue:
- 3
- ISSN:
- 0960-1627
- Format(s):
- Medium: X Size: p. 979-1012
- Size(s):
- p. 979-1012
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we consider a randomized greedy algorithm for independent sets inr‐uniformd‐regular hypergraphsGonnvertices with girthg. By analyzing the expected size of the independent sets generated by this algorithm, we show that, whereconverges to 0 asg → ∞for fixeddandr, andf(d, r) is determined by a differential equation. This extends earlier results of Garmarnik and Goldberg for graphs [8]. We also prove that when applying this algorithm to uniform linear hypergraphs with bounded degree, the size of the independent sets generated by this algorithm concentrate around the mean asymptotically almost surely.more » « less
-
Given a fixed graph H, what is the (exponentially small) probability that the number XHof copies of Hin the binomial random graph Gn,pis at least twice its mean? Studied intensively since the mid 1990s, this so‐called infamous upper tail problem remains a challenging testbed for concentration inequalities. In 2011 DeMarco and Kahn formulated an intriguing conjecture about the exponential rate of decay of for fixed ε > 0. We show that this upper tail conjecture is false, by exhibiting an infinite family of graphs violating the conjectured bound.more » « less
-
Abstract The 2021MW6.0 Yangbi, Yunnan strike‐slip earthquake occurred on an unmapped crustal fault near the Weixi‐Qiaoho‐Weishan Fault along the southeast margin of the Tibetan Plateau. Using near‐source broadband seismic data from ChinArray, we investigate the spatial and temporal rupture evolution of the mainshock using apparent moment‐rate functions (AMRFs) determined by the empirical Green's function (EGF) method. Assuming a 1D line source on the fault plane, the rupture propagated unilaterally southeastward (∼144°) over a rupture length of ∼8.0 km with an estimated rupture speed of 2.1 km/s to 2.4 km/s. A 2D coseismic slip distribution for an assumed maximum rupture propagation speed of 2.2 km/s indicates that the rupture propagated to the southeast ∼8.0 km along strike and ∼5.0 km downdip with a peak slip of ∼2.1 m before stopping near the largest foreshock, where three bifurcating subfaults intersect. Using the AMRFs, the radiated energy of the mainshock is estimated as ∼. The relatively low moment scaled radiated energyof 1.5 × 10−5and intense foreshock and aftershock activity might indicate reactivation of an immature fault. The earthquake sequence is mainly distributed along a northwest‐southeast trend, and aftershocks and foreshocks are distributed near the periphery of the mainshock large‐slip area, suggesting that the stress in the mainshock slip zone is significantly reduced to below the level for more than a few overlapping aftershock to occur.more » « less
-
Abstract Serendipitous measurements of deep internal wave signatures are evident in oscillatory variations around the background descent rates reported by one model of Deep Argo float. For the 10,045 profiles analyzed here, the average root‐mean‐square of vertical velocity variances,, from 1,000 m to the seafloor, is 0.0045 m s−1, with a 5%–95% range of 0.0028–0.0067 m s−1. Dominant vertical wavelengths,λz, estimated from the integrals of lagged autocorrelation sequences have an average value of 757 m, with a 5%–95% range of 493–1,108 m. Bothandλzexhibit regional variations among and within some deep ocean basins, with generally largerand shorterλzin regions of rougher bathymetry or stronger deep currents. These correlations are both expected, since largerand shorterλzshould be found near internal wave generation regions.more » « less
An official website of the United States government
