skip to main content


Search for: All records

Award ID contains: 1715661

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The LIGO–Virgo–KAGRA Collaboration recently detected gravitational waves (GWs) from the merger of black hole–neutron star (BHNS) binary systems GW200105 and GW200115. No coincident electromagnetic (EM) counterparts were detected. While the mass ratio and BH spin in both systems were not sufficient to tidally disrupt the NS outside the BH event horizon, other, magnetospheric mechanisms for EM emission exist in this regime and depend sensitively on the NS magnetic field strength. Combining GW measurements with EM flux upper limits, we place upper limits on the NS surface magnetic field strength above which magnetospheric emission models would have generated an observable EM counterpart. We consider fireball models powered by the black hole battery mechanism, where energy is output in gamma rays over ≲1 s. Consistency with no detection by Fermi-GBM or INTEGRAL SPI-ACS constrains the NS surface magnetic field to ≲1015G. Hence, joint GW detection and EM upper limits rule out the theoretical possibility that the NSs in GW200105 and GW200115, and the putative NS in GW190814, retain dipolar magnetic fields ≳1015G until merger. They also rule out formation scenarios where strongly magnetized magnetars quickly merge with BHs. We alternatively rule out operation of the BH-battery-powered fireball mechanism in these systems. This is the first multimessenger constraint on NS magnetic fields in BHNS systems and a novel approach to probe fields at this point in NS evolution. This demonstrates the constraining power that multimessenger analyses of BHNS mergers have on BHNS formation scenarios, NS magnetic field evolution, and the physics of BHNS magnetospheric interactions.

     
    more » « less
  2. Abstract Active galactic nuclei (AGNs) can funnel stars and stellar remnants from the vicinity of the galactic center into the inner plane of the AGN disk. Stars reaching this inner region can be tidally disrupted by the stellar-mass black holes in the disk. Such micro tidal disruption events (micro-TDEs) could be a useful probe of stellar interaction with the AGN disk. We find that micro-TDEs in AGNs occur at a rate of ∼170 Gpc −3 yr −1 . Their cleanest observational probe may be the electromagnetic detection of tidal disruption in AGNs by heavy supermassive black holes ( M • ≳ 10 8 M ⊙ ) that cannot tidally disrupt solar-type stars. The reconstructed rate of such events from observations, nonetheless, appears to be much lower than our estimated micro-TDE rate. We discuss two such micro-TDE candidates observed to date (ASASSN-15lh and ZTF19aailpwl). 
    more » « less
  3. Abstract Linear analysis of gas flows around orbiting binaries suggests that a centrifugal barrier ought to clear a low-density cavity around the binary and inhibit mass transfer onto it. Modern hydrodynamics simulations have confirmed the low-density cavity, but show that any mass flowing from large scales into the circumbinary disk is eventually transferred onto the binary components. Even though many numerical studies confirm this picture, it is still not understood precisely how gas parcels overcome the centrifugal barrier and ultimately accrete. We present a detailed analysis of the binary accretion process, using an accurate prescription for evolving grid-based hydrodynamics with Lagrangian tracer particles that track the trajectories of individual gas parcels. We find that binary accretion can be described in four phases: (1) gas is viscously transported through the circumbinary disk up to the centrifugal barrier at the cavity wall, (2) the cavity wall is tidally distorted into accretion streams consisting of near-ballistic gas parcels on eccentric orbits, (3) the portion of each stream moving inwards of an accretion horizon radius r ¯ ≃ a —the radius beyond which no material is returned to the cavity wall—becomes bound to a minidisk orbiting an individual binary component, and (4) the minidisk gas accretes onto the binary component through the combined effect of viscous and tidal stresses. 
    more » « less
  4. Abstract Stellar-mass BHs (sBHs) are predicted to be embedded in active galactic nucleus (AGN) disks owing to gravitational drag and in situ star formation. However, we find that, due to a high gas density in an AGN disk environment, compact objects may rapidly grow to intermediate-mass BHs and deplete matter from the AGN disk unless accretion is suppressed by some feedback process(es). These consequences are inconsistent with AGN observations and the dynamics of the Galactic center. Here we consider mechanical feedback mechanisms for the reduction of gas accretion. Rapidly accreting sBHs launch winds and/or jets via the Blandford–Znajek mechanism, which produce high-pressure shocks and cocoons. Such a shock and cocoon can spread laterally in the plane of the disk, eject the outer regions of a circum-sBH disk (CsBD), and puncture a hole in the AGN disk with horizontal size comparable to the disk scale height. Since the depletion timescale of the bound CsBD is much shorter than the resupply timescale of gas to the sBH, the time-averaged accretion rate onto sBHs is reduced by this process by a factor of ∼10–100. This feedback mechanism can therefore help alleviate the sBH overgrowth and AGN disk depletion problems. On the other hand, we find that cocoons of jets can unbind a large fraction of the gas accreting in the disks of less massive supermassive BHs (SMBHs), which may help explain the dearth of high-Eddington-ratio AGNs with SMBH mass ≲ 10 5 M ⊙ . 
    more » « less
  5. ABSTRACT Variable active galactic nuclei showing periodic light curves have been proposed as massive black hole binary (MBHB) candidates. In such scenarios, the periodicity can be due to relativistic Doppler-boosting of the emitted light. This hypothesis can be tested through the timing of scattered polarized light. Following the results of polarization studies in type I nuclei and of dynamical studies of MBHBs with circumbinary discs, we assume a coplanar equatorial scattering ring, whose elements contribute differently to the total polarized flux, due to different scattering angles, levels of Doppler boost, and line-of-sight time delays. We find that in the presence of an MBHB, both the degree of polarization and the polarization position angle have periodic modulations. The polarization angle oscillates around the semiminor axis of the projected MBHB orbital ellipse, with a frequency equal either to the binary’s orbital frequency (for large scattering screen radii), or twice this value (for smaller scattering structures). These distinctive features can be used to probe the nature of periodic MBHB candidates and to compile catalogues of the most promising sub-pc MBHBs. The identification of such polarization features in gravitational-wave (GW) detected MBHBs would enormously increase the amount of physical information about the sources, allowing the measurement of the individual masses of the binary components, and the orientation of the line of nodes on the sky, even for monochromatic GW signals. 
    more » « less
  6. ABSTRACT Recent gravitational wave (GW) observations by LIGO/Virgo show evidence for hierarchical mergers, where the merging BHs are the remnants of previous BH merger events. These events may carry important clues about the astrophysical host environments of the GW sources. In this paper, we present the distributions of the effective spin parameter (χeff), the precession spin parameter (χp), and the chirp mass (mchirp) expected in hierarchical mergers. Under a wide range of assumptions, hierarchical mergers produce (i) a monotonic increase of the average of the typical total spin for merging binaries, which we characterize with $\scriptstyle{{\bar{\chi }}_\mathrm{typ}\equiv \overline{(\chi _\mathrm{eff}^2+\chi _\mathrm{p}^2)^{1/2}}}$, up to roughly the maximum mchirp among first-generation (1g) BHs, and (ii) a plateau at ${\bar{\chi }}_\mathrm{typ}\sim 0.6$ at higher mchirp. We suggest that the maximum mass and typical spin magnitudes for 1g BHs can be estimated from ${\bar{\chi }}_\mathrm{typ}$ as a function of mchirp. The GW data observed in LIGO/Virgo O1–O3a prefers an increase in ${\bar{\chi }}_\mathrm{typ}$ at low mchirp, which is consistent with the growth of the BH spin magnitude by hierarchical mergers at ∼2σ confidence. A Bayesian analysis using the χeff, χp, and mchirp distributions suggests that 1g BHs have the maximum mass of ∼15–$30\, {\rm M}_\odot$ if the majority of mergers are of high-generation BHs (not among 1g–1g BHs), which is consistent with mergers in active galactic nucleus discs and/or nuclear star clusters, while if mergers mainly originate from globular clusters, 1g BHs are favoured to have non-zero spin magnitudes of ∼0.3. We also forecast that signatures for hierarchical mergers in the ${\bar{\chi }}_\mathrm{typ}$ distribution can be confidently recovered once the number of GW events increases to ≳ O(100). 
    more » « less