skip to main content

Search for: All records

Award ID contains: 1716327

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accretion disks around supermassive black holes in active galactic nuclei produce continuum radiation at ultraviolet and optical wavelengths. Physical processes in the accretion flow lead to stochastic variability of this emission on a wide range of time scales. We measured the optical continuum variability observed in 67 active galactic nuclei and the characteristic time scale at which the variability power spectrum flattens. We found a correlation between this time scale and the black hole mass extending over the entire mass range of supermassive black holes. This time scale is consistent with the expected thermal time scale at the ultraviolet-emitting radiusmore »in standard accretion disk theory. Accreting white dwarfs lie close to this correlation, suggesting a common process for all accretion disks.

    « less
  2. null (Ed.)
    Abstract Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii ( r g  ≡  G M / c 2 ) scales in nearby sources 1 . Centaurus A is the closest radio-loud source to Earth 2 . It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thusmore »far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations 3 , we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500  r g scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow 4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses 5,6 .« less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract Gravitational lensing near a black hole is strong enough that light rays can circle the event horizon multiple times. Photons emitted in multiple directions at a single event, perhaps because of localized, impulsive heating of accreting plasma, take multiple paths to a distant observer. In the Kerr geometry, each path is associated with a distinct light travel time and a distinct arrival location in the image plane, producing black hole glimmer. This sequence of arrival times and locations uniquely encodes the mass and spin of the black hole and can be understood in terms of properties of bound photonmore »orbits. We provide a geometrically motivated treatment of Kerr glimmer and evaluate it numerically for simple hot-spot models to show that glimmer can be measured in a finite-resolution observation. We discuss potential measurement methods and implications for tests of the Kerr hypothesis.« less
  7. null (Ed.)
  8. null (Ed.)