skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1717066

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper introduces a vision-based tactile sensor FingerVision, and explores its usefulness in tactile behaviors. FingerVision consists of a transparent elastic skin marked with dots, and a camera that is easy to fabricate, low cost, and physically robust. Unlike other vision-based tactile sensors, the complete transparency of the FingerVision skin provides multimodal sensation. The modalities sensed by FingerVision include distributions of force and slip, and object information such as distance, location, pose, size, shape, and texture. The slip detection is very sensitive since it is obtained by computer vision directly applied to the output from the FingerVision camera. It provides high-resolution slip detection, which does not depend on the contact force, i.e., it can sense slip of a lightweight object that generates negligible contact force. The tactile behaviors explored in this paper include manipulations that utilize this feature. For example, we demonstrate that grasp adaptation with FingerVision can grasp origami, and other deformable and fragile objects such as vegetables, fruits, and raw eggs. 
    more » « less
  2. Granular materials produce audio-frequency mechanical vibrations in air and structures when manipulated. These vibrations correlate with both the nature of the events and the intrinsic properties of the materials producing them. We therefore propose learning to use audio-frequency vibrations from contact events to estimate the flow and amount of granular materials during scooping and pouring tasks. We evaluated multiple deep and shallow learning frameworks on a dataset of 13,750 shaking and pouring samples across five different granular materials. Our results indicate that audio is an informative sensor modality for accurately estimating flow and amounts, with a mean RMSE of 2.8g across the five materials for pouring. We also demonstrate how the learned networks can be used to pour a desired amount of material. 
    more » « less