skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1717206

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a nonconvex estimator for the covariate adjusted precision matrix estimation problem in the high dimensional regime, under sparsity constraints. To solve this estimator, we propose an alternating gradient descent algorithm with hard thresholding. Compared with existing methods along this line of research, which lack theoretical guarantees in optimization error and/or statistical error, the proposed algorithm not only is computationally much more efficient with a linear rate of convergence, but also attains the optimal statistical rate up to a logarithmic factor. Thorough experiments on both synthetic and real data support our theory. 
    more » « less
  2. We revisit the inductive matrix completion problem that aims to recover a rank-r matrix with ambient dimension d given n features as the side prior information. The goal is to make use of the known n features to reduce sample and computational complexities. We present and analyze a new gradient-based non-convex optimization algorithm that converges to the true underlying matrix at a linear rate with sample complexity only linearly depending on n and logarithmically depending on d. To the best of our knowledge, all previous algorithms either have a quadratic dependency on the number of features in sample complexity or a sub-linear computational convergence rate. In addition, we provide experiments on both synthetic and real world data to demonstrate the effectiveness of our proposed algorithm. 
    more » « less