skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization
We propose a nonconvex estimator for the covariate adjusted precision matrix estimation problem in the high dimensional regime, under sparsity constraints. To solve this estimator, we propose an alternating gradient descent algorithm with hard thresholding. Compared with existing methods along this line of research, which lack theoretical guarantees in optimization error and/or statistical error, the proposed algorithm not only is computationally much more efficient with a linear rate of convergence, but also attains the optimal statistical rate up to a logarithmic factor. Thorough experiments on both synthetic and real data support our theory.  more » « less
Award ID(s):
1652539 1717206 1618948
PAR ID:
10063536
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tensors are becoming prevalent in modern applications such as medical imaging and digital marketing. In this paper, we propose a sparse tensor additive regression (STAR) that models a scalar response as a flexible nonparametric function of tensor covariates. The proposed model effectively exploits the sparse and low-rank structures in the tensor additive regression. We formulate the parameter estimation as a non-convex optimization problem, and propose an efficient penalized alternating minimization algorithm. We establish a non-asymptotic error bound for the estimator obtained from each iteration of the proposed algorithm, which reveals an interplay between the optimization error and the statistical rate of convergence. We demonstrate the efficacy of STAR through extensive comparative simulation studies, and an application to the click-through-rate prediction in online advertising. 
    more » « less
  2. Abstract In many scientific experiments, multiarmed bandits are used as an adaptive data collection method. However, this adaptive process can lead to a dependence that renders many commonly used statistical inference methods invalid. An example of this is the sample mean, which is a natural estimator of the mean parameter but can be biased. This can cause test statistics based on this estimator to have an inflated type I error rate, and the resulting confidence intervals may have significantly lower coverage probabilities than their nominal values. To address this issue, we propose an alternative approach called randomized multiarm bandits (rMAB). This combines a randomization step with a chosen MAB algorithm, and by selecting the randomization probability appropriately, optimal regret can be achieved asymptotically. Numerical evidence shows that the bias of the sample mean based on the rMAB is much smaller than that of other methods. The test statistic and confidence interval produced by this method also perform much better than its competitors. 
    more » « less
  3. We consider the problem of learning high-dimensional Gaussian graphical models. The graphical lasso is one of the most popular methods for estimating Gaussian graphical models. However, it does not achieve the oracle rate of convergence. In this paper, we propose the graphical nonconvex optimization for optimal estimation in Gaussian graphical models, which is then approximated by a sequence of convex programs. Our proposal is computationally tractable and produces an estimator that achieves the oracle rate of convergence. The statistical error introduced by the sequential approximation using a sequence of convex programs is clearly demonstrated via a contraction property. The proposed methodology is then extended to modeling semiparametric graphical models. We show via numerical studies that the proposed estimator outperforms other popular methods for estimating Gaussian graphical models. 
    more » « less
  4. Modeling unknown systems from data is a precursor of system optimization and sequential decision making. In this paper, we focus on learning a Markov model from a single trajectory of states. Suppose that the transition model has a small rank despite having a large state space, meaning that the system admits a low-dimensional latent structure. We show that one can estimate the full transition model accurately using a trajectory of length that is proportional to the total number of states. We propose two maximum-likelihood estimation methods: a convex approach with nuclear norm regularization and a nonconvex approach with rank constraint. We explicitly derive the statistical rates of both estimators in terms of the Kullback-Leiber divergence and the [Formula: see text] error and also establish a minimax lower bound to assess the tightness of these rates. For computing the nonconvex estimator, we develop a novel DC (difference of convex function) programming algorithm that starts with the convex M-estimator and then successively refines the solution till convergence. Empirical experiments demonstrate consistent superiority of the nonconvex estimator over the convex one. 
    more » « less
  5. null (Ed.)
    Abstract We consider stochastic systems of interacting particles or agents, with dynamics determined by an interaction kernel, which only depends on pairwise distances. We study the problem of inferring this interaction kernel from observations of the positions of the particles, in either continuous or discrete time, along multiple independent trajectories. We introduce a nonparametric inference approach to this inverse problem, based on a regularized maximum likelihood estimator constrained to suitable hypothesis spaces adaptive to data. We show that a coercivity condition enables us to control the condition number of this problem and prove the consistency of our estimator, and that in fact it converges at a near-optimal learning rate, equal to the min–max rate of one-dimensional nonparametric regression. In particular, this rate is independent of the dimension of the state space, which is typically very high. We also analyze the discretization errors in the case of discrete-time observations, showing that it is of order 1/2 in terms of the time spacings between observations. This term, when large, dominates the sampling error and the approximation error, preventing convergence of the estimator. Finally, we exhibit an efficient parallel algorithm to construct the estimator from data, and we demonstrate the effectiveness of our algorithm with numerical tests on prototype systems including stochastic opinion dynamics and a Lennard-Jones model. 
    more » « less