skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1717420

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With Cyber warfare, detection of hardware Trojans, malicious digital circuit components that can leak data and degrade performance, is an urgent issue. Quasi‐Delay Insensitive asynchronous digital circuits, such as NULL Convention Logic (NCL) and Sleep Convention Logic, also known as Multi‐Threshold NULL Convention Logic (MTNCL), have inherent security properties and resilience to large fluctuations in temperatures, which make them very alluring to extreme environment applications, such as space exploration, automotive, power industry etc. This paper shows how dual‐rail encoding used in NCL and MTNCL can be exploited to design Trojans, which would not be detected using existing methods. Generic threat models for Trojans are given. Formal verification methods that are capable of accurate detection of Trojans at the Register‐Transfer‐Level are also provided. The detection methods were tested by embedding Trojans in NCL and MTNCL Rivest‐Shamir‐Adleman (RSA) decryption circuits. The methods were applied to 25 NCL and 25 MTNCL RSA benchmarks of various data path width and provided 100% rate of detection. 
    more » « less
  2. null (Ed.)