skip to main content


Title: Minimizing Age-of-Information in Heterogeneous Multi-Channel Systems: A New Partial-Index Approach
We study how to schedule data sources in a wireless time-sensitive information system with multiple heterogeneous and unreliable channels to minimize the total expected Age-of-Information (AoI). Although one could formulate this problem as a discrete-time Markov Decision Process (MDP), such an approach suffers from the curse of dimensionality and lack of insights. For single-channel systems, prior studies have developed lower-complexity solutions based on the Whittle index. However, Whittle index has not been studied for systems with multiple heterogeneous channels, mainly because indexability is not well defined when there are multiple dual cost values, one for each channel. To overcome this difficulty, we introduce new notions of partial indexability and partial index, which are defined with respect to one channel's cost, given all other channels' costs. We then combine the ideas of partial indices and max-weight matching to develop a Sum Weighted Index Matching (SWIM) policy, which iteratively updates the dual costs and partial indices. The proposed policy is shown to be asymptotically optimal in minimizing the total expected AoI, under a technical condition on a global attractor property. Extensive performance simulations demonstrate that the proposed policy offers significant gains over conventional approaches by achieving a near-optimal AoI. Further, the notion of partial index is of independent interest and could be useful for other problems with multiple heterogeneous resources.  more » « less
Award ID(s):
1717493 1703014
NSF-PAR ID:
10300528
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM MobiHoc 2021
Page Range / eLocation ID:
11 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study a sampling and transmission scheduling problem for multi-source remote estimation, where a scheduler determines when to take samples from multiple continuous-time Gauss-Markov processes and send the samples over multiple channels to remote estimators. The sample transmission times are i.i.d. across samples and channels. The objective of the scheduler is to minimize the weighted sum of the time-average expected estimation errors of these Gauss-Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB) problem with a continuous state space. We prove that the bandits are indexable and derive an exact expression of the Whittle index. To the extent of our knowledge, this is the first Whittle index policy for multi-source signal-aware remote estimation of Gauss-Markov processes. We further investigate signal-agnostic remote estimation and develop a Whittle index policy for multi-source Age of Information (AoI) minimization over parallel channels with i.i.d. random transmission times. Our results unite two theoretical frameworks for remote estimation and AoI minimization: threshold-based sampling and Whittle index-based scheduling. In the single-source, single-channel scenario, we demonstrate that the optimal solution to the sampling and scheduling problem can be equivalently expressed as both a threshold-based sampling strategy and a Whittle index-based scheduling policy. Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i) the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the threshold-based sampling strategy. Moreover, the methodology employed to derive threshold-based sampling strategies in the single-source, single-channel scenario plays a crucial role in establishing indexability and evaluating the Whittle index in the more intricate multi-source, multi-channel scenario. Our numerical results show that the proposed policy achieves high performance gain over the existing policies when some of the Gauss-Markov processes are highly unstable. 
    more » « less
  2. In this paper, we address the problem of channel allocation for femtocells that share the use of regular macrocell spectrum. The femto basestation (FBS) scheduling problem is formulated in the form of restless multiarmed bandit (RMAB) framework. Our goal is to choose the arms/channels that maximize the total expected discounted reward over infinite horizon while minimizing the induced interference due to channel sharing with macrocell. Without direct observation of true channel state, we use the available macrocell user feedback known as channel quality indicator (CQI). In general, the RMAB problem is P-SPACE hard. We propose a heuristic low complexity indexing policy referred as approximated Whittle index to rank available channels for FBS. Although finding a closed form channel ranking solution typically involve dynamic programming, we show that based on the partial channel information within CQI, there exists a closed form for the channel index. Moreover, we demonstrate the performance advantage of the proposed indexing policy over a myopic policy. 
    more » « less
  3. We study adaptive video streaming for multiple users in wireless access edge networks with unreliable channels. The key challenge is to jointly optimize the video bitrate adaptation and resource allocation such that the users' cumulative quality of experience is maximized. This problem is a finite-horizon restless multi-armed multi-action bandit problem and is provably hard to solve. To overcome this challenge, we propose a computationally appealing index policy entitled Quality Index Policy, which is well-defined without the Whittle indexability condition and is provably asymptotically optimal without the global attractor condition. These two conditions are widely needed in the design of most existing index policies, which are difficult to establish in general. Since the wireless access edge network environment is highly dynamic with system parameters unknown and time-varying, we further develop an index-aware reinforcement learning (RL) algorithm dubbed QA-UCB. We show that QA-UCB achieves a sub-linear regret with a low-complexity since it fully exploits the structure of the Quality Index Policy for making decisions. Extensive simulations using real-world traces demonstrate significant gains of proposed policies over conventional approaches. We note that the proposed framework for designing index policy and index-aware RL algorithm is of independent interest and could be useful for other large-scale multi-user problems. 
    more » « less
  4. null (Ed.)
    In this paper, we study the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel, where information can be transmitted at a high rate when the channel is in the "ON" state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission with the aim to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which in our setting poses some significant challenges because e.g., supermodularity does not hold for part of the state space. We show that there exists a multi-dimensional threshold-based scheduling policy that is optimal for minimizing the age. A low-complexity bisection algorithm is further devised to compute the optimal thresholds. Numerical simulations are provided to compare different scheduling policies. 
    more » « less
  5. null (Ed.)
    We study the deadline scheduling problem for multiple deferrable jobs that arrive in a random manner and are to be processed before individual deadlines. The processing of the jobs is subject to a time-varying limit on the total processing rate at each stage. We formulate the scheduling problem as a restless multi-armed bandit (RMAB) problem. Relaxing the scheduling problem into multiple independent single-arm scheduling problems, we define the Lagrangian priority value as the greatest tax under which it is optimal to activate the arm, and establish the asymptotic optimality of the proposed Lagrangian priority policy for large systems. Numerical results show that the proposed Lagrangian priority policy achieves 22%-49% higher average reward than the classical Whittle index policy (that does not take into account the processing rate limits). 
    more » « less