Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shared session types generalize the Curry-Howard correspondence between intuitionistic linear logic and the session-typed pi-calculus with adjoint modalities that mediate between linear and shared session types, giving rise to a programming model where shared channels must be used according to a locking discipline of acquire-release. While this generalization greatly increases the range of programs that can be written, the gain in expressiveness comes at the cost of deadlock-freedom, a property which holds for many linear session type systems. In this paper, we develop a type system for logically-shared sessions in which types capture not only the interactive behavior of processes but also constrain the order of resources (i.e., shared processes) they may acquire. This type-level information is then used to rule out cyclic dependencies among acquires and synchronization points, resulting in a system that ensures deadlock-free communication for well-typed processes in the presence of shared sessions, higher-order channel passing, and recursive processes. We illustrate our approach on a series of examples, showing that it rules out deadlocks in circular networks of both shared and linear recursive processes, while still being permissive enough to type concurrent implementations of shared imperative data structures as processes.more » « less
-
In the simply-typed lambda-calculus we can recover the full range of expressiveness of the untyped lambda-calculus solely by adding a single recursive type U = U -> U. In contrast, in the session-typed pi-calculus, recursion alone is insufficient to recover the untyped pi-calculus, primarily due to linearity: each channel just has two unique endpoints. In this paper, we show that shared channels with a corresponding sharing semantics (based on the language SILL_S developed in prior work) are enough to embed the untyped asynchronous pi-calculus via a universal shared session type U_S. We show that our encoding of the asynchronous pi-calculus satisfies operational correspondence and preserves observable actions (i.e., processes are weakly bisimilar to their encoding). Moreover, we clarify the expressiveness of SILL_S by developing an operationally correct encoding of SILL_S in the asynchronous pi-calculus.more » « less
An official website of the United States government

Full Text Available