skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1719270

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run. 
    more » « less
  2. Abstract The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to$${}^{83\textrm{m}}\hbox {Kr }$$ 83 m Kr calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages. 
    more » « less
  3. Abstract The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the$$^{222}$$ 222 Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a$$^{222}$$ 222 Rn activity concentration of$$10\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ 10 μ Bq / kg in$$3.2\,\mathrm{t}$$ 3.2 t of xenon. The knowledge of the distribution of the$$^{222}$$ 222 Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the$$^{222}$$ 222 Rn activity concentration in XENON1T. The final$$^{222}$$ 222 Rn activity concentration of$$(4.5\pm 0.1)\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ ( 4.5 ± 0.1 ) μ Bq / kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment. 
    more » « less
  4. Abstract The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches.The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system.For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software.The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system.In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at ×10 and ×0.5 gain.The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds.Custom-developed software is used to process the acquired data, making it available within ∼30 s for live data quality monitoring and online analyses.The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed ∼500 MB/s during calibration.Livetime during normal operation exceeds 99% and is ∼90% during most high-rate calibrations.The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run. 
    more » « less
  5. Abstract A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal $${}^{37}$$ 37 Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be ( $$32.3\,\pm \,0.3$$ 32.3 ± 0.3 ) photons/keV and ( $$40.6\,\pm \,0.5$$ 40.6 ± 0.5 ) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is ( $$68.0^{+6.3}_{-3.7}$$ 68 . 0 - 3.7 + 6.3 ) electrons/keV. The $${}^{37}$$ 37 Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at ( $$2.83\,\pm \,0.02$$ 2.83 ± 0.02 ) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that $${}^{37}$$ 37 Ar can be considered as a regular calibration source for multi-tonne xenon detectors. 
    more » « less
  6. Abstract The XENON collaboration has published stringent limits on specific dark matter – nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure. 
    more » « less