skip to main content


Search for: All records

Award ID contains: 1719582

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. This study explores the relationships between chemical and sensory characteristics of wines in connection with their regions of production. The objective is to identify whether such characteristics are significant enough to serve as signatures of a terroir for wines, thereby supporting the concept of regionality. We argue that the relationships between characteristics and regions of production for the set of wines under study are rendered complicated by possible non-linear relationships between the characteristics themselves. Consequently, we propose a new approach for performing the analysis of the wine data that relies on these relationships instead of trying to circumvent them. This new approach follows two steps: We first cluster the measurements for each characteristic (chemical, or sensory) independently. We then assign a distance between two features to be the mutual entropy of the clustering results they generate. The set of characteristics is then clustered using this distance measure. The result of this clustering is a set of sub-groups of characteristics, such that two characteristics in the same group carry similar, i.e., synergetic information with respect to the wines under study. Those wines are then analyzed separately on the different sub groups of features. We have used this method to analyze the similarities and differences between Malbec wines from Argentina and California, as well as the similarities and differences between sub-regions of those two main wine producing countries. We report detection of groups of features that characterize the origins of the different wines included in the study. We note stronger evidence of regionality for Argentinian Malbec wines than for Californian wines, at least for the sub regions of production included in this study. 
    more » « less
  4. The representation of knots by petal diagrams (Adams et al 2012) naturally defines a sequence of distributions on the set of knots. We establish some basic properties of this randomized knot model. We prove that in the random n–petal model the probability of obtaining every specific knot type decays to zero as n, the number of petals, grows. In addition we improve the bounds relating the crossing number and the petal number of a knot. This implies that the n–petal model represents at least exponentially many distinct knots. Past approaches to showing, in some random models, that individual knot types occur with vanishing probability rely on the prevalence of localized connect summands as the complexity of the knot increases. However, this phenomenon is not clear in other models, including petal diagrams, random grid diagrams and uniform random polygons. Thus we provide a new approach to investigate this question. 
    more » « less