skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The distribution of knots in the Petaluma model
The representation of knots by petal diagrams (Adams et al 2012) naturally defines a sequence of distributions on the set of knots. We establish some basic properties of this randomized knot model. We prove that in the random n–petal model the probability of obtaining every specific knot type decays to zero as n, the number of petals, grows. In addition we improve the bounds relating the crossing number and the petal number of a knot. This implies that the n–petal model represents at least exponentially many distinct knots. Past approaches to showing, in some random models, that individual knot types occur with vanishing probability rely on the prevalence of localized connect summands as the complexity of the knot increases. However, this phenomenon is not clear in other models, including petal diagrams, random grid diagrams and uniform random polygons. Thus we provide a new approach to investigate this question.  more » « less
Award ID(s):
1719582 1439786
PAR ID:
10170431
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Algebraic geometric topology
Volume:
18
Issue:
6
ISSN:
1472-2747
Page Range / eLocation ID:
3647–3667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A well-known algorithm for unknotting knots involves traversing a knot diagram and changing each crossing that is first encountered from below. The minimal number of crossings changed in this way across all diagrams for a knot is called the ascending number of the knot. The ascending number is bounded below by the unknotting number. We show that for knots obtained as the closure of a positive braid, the ascending number equals the unknotting number. We also present data indicating that a similar result may hold for positive knots. We use this data to examine which low-crossing knots have the property that their ascending number is realized in a minimal crossing diagram, showing that there are at most 5 hyperbolic, alternating knots with at most 12 crossings with this property. 
    more » « less
  2. Goaoc, Xavier; Kerber, Michael (Ed.)
    A knot is a circle piecewise-linearly embedded into the 3-sphere. The topology of a knot is intimately related to that of its exterior, which is the complement of an open regular neighborhood of the knot. Knots are typically encoded by planar diagrams, whereas their exteriors, which are compact 3-manifolds with torus boundary, are encoded by triangulations. Here, we give the first practical algorithm for finding a diagram of a knot given a triangulation of its exterior. Our method applies to links as well as knots, allows us to recover links with hundreds of crossings. We use it to find the first diagrams known for 23 principal congruence arithmetic link exteriors; the largest has over 2,500 crossings. Other applications include finding pairs of knots with the same 0-surgery, which relates to questions about slice knots and the smooth 4D Poincaré conjecture. 
    more » « less
  3. Many well studied knots can be realized as positive braid knots where the braid word contains a positive full twist; we say that such knots are twist positive. Some important families of knots are twist positive, including torus knots, 1-bridge braids, algebraic knots, and Lorenz knots. We prove that if a knot is twist positive, the braid index appears as the third exponent in its Alexander polynomial. We provide a few applications of this result. After observing that most known examples of L-space knots are twist positive, we prove: if K is a twist positive L-space knot, the braid index and bridge index of K agree. This allows us to provide evidence for Baker’s reinterpretation of the slice-ribbon conjecture: that every smooth concordance class contains at most one fibered, strongly quasipositive knot. In particular, we provide the first example of an infinite family of positive braid knots which are distinct in concordance, and where, as g tends to infinity, the number of hyperbolic knots of genus g gets arbitrarily large. Finally, we collect some evidence for a few new conjectures, including the following: the braid and bridge indices agree for any L-space knot. 
    more » « less
  4. The ribbon number of a knot is the minimum number of ribbon singularities among all ribbon disks bounded by that knot. In this paper, we build on the systematic treatment of this knot invariant initiated in recent work of Friedl, Misev, and Zupan. We show that the set of Alexander polynomials of knots with ribbon number at most four contains 56 polynomials, and we use this set to compute the ribbon numbers for many 12-crossing knots. We also study higher-genus ribbon numbers of knots, presenting some examples that exhibit interesting behavior and establishing that the success of the Alexander polynomial at controlling genus-0 ribbon numbers does not extend to higher genera. 
    more » « less
  5. Knot mosaics are a model of a quantum knot system. A knot mosaic is a m-by-n grid where each location on the grid may contain any of 11 possible tiles such that the final layout has closed loops. Oh et al. proved a recurrence relation of state matrices to count the number of m-by-n knot mosaics. Our contribution is to use ALLSAT solvers to count knot mosaics and to experimentally try different ways to encode the AT MOST ONE constraint in SAT. We plan to use our SAT method as a tool to list knot mosaics of interest for specific classes of knots. 
    more » « less