skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1720213

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    In Lipschitz two- and three-dimensional domains, we study the existence for the so-called Boussinesq model of thermally driven convection under singular forcing. By singular we mean that the heat source is allowed to belong to [Formula: see text], where [Formula: see text] is a weight in the Muckenhoupt class [Formula: see text] that is regular near the boundary. We propose a finite element scheme and, under the assumption that the domain is convex and [Formula: see text], show its convergence. In the case that the thermal diffusion and viscosity are constants, we propose an a posteriori error estimator and show its reliability. We also explore efficiency estimates. 
    more » « less
  4. We study the regularity of the solution to an obstacle problem for a class of integro–differential operators. The differential part is a second order elliptic operator, whereas the nonlocal part is given by the integral fractional Laplacian. The obtained smoothness is then used to design and analyze a finite element scheme. 
    more » « less
  5. null (Ed.)
  6. We review recent advances in the numerical analysis of the Monge–Ampère equation. Various computational techniques are discussed including wide stencil finite difference schemes, two-scaled methods, finite element methods, and methods based on geometric considerations. Particular focus is the development of appropriate stability and consistency estimates which lead to rates of convergence of the discrete approximations. Finally we present numerical experiments which highlight each method for a variety of test problem with different levels of regularity. 
    more » « less
  7. We obtain regularity results in weighted Sobolev spaces for the solution of the obstacle problem for the integral fractional Laplacian [Formula: see text] in a Lipschitz bounded domain [Formula: see text] satisfying the exterior ball condition. The weight is a power of the distance to the boundary [Formula: see text] of [Formula: see text] that accounts for the singular boundary behavior of the solution for any [Formula: see text]. These bounds then serve us as a guide in the design and analysis of a finite element scheme over graded meshes for any dimension [Formula: see text], which is optimal for [Formula: see text]. 
    more » « less