skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian
We obtain regularity results in weighted Sobolev spaces for the solution of the obstacle problem for the integral fractional Laplacian [Formula: see text] in a Lipschitz bounded domain [Formula: see text] satisfying the exterior ball condition. The weight is a power of the distance to the boundary [Formula: see text] of [Formula: see text] that accounts for the singular boundary behavior of the solution for any [Formula: see text]. These bounds then serve us as a guide in the design and analysis of a finite element scheme over graded meshes for any dimension [Formula: see text], which is optimal for [Formula: see text].  more » « less
Award ID(s):
1720213
PAR ID:
10148980
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematical Models and Methods in Applied Sciences
Volume:
29
Issue:
14
ISSN:
0218-2025
Page Range / eLocation ID:
2679 to 2717
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Let [Formula: see text] be a convex function satisfying [Formula: see text], [Formula: see text] for [Formula: see text], and [Formula: see text]. Consider the unique entropy admissible (i.e. Kružkov) solution [Formula: see text] of the scalar, 1-d Cauchy problem [Formula: see text], [Formula: see text]. For compactly supported data [Formula: see text] with bounded [Formula: see text]-variation, we realize the solution [Formula: see text] as a limit of front-tracking approximations and show that the [Formula: see text]-variation of (the right continuous version of) [Formula: see text] is non-increasing in time. We also establish the natural time-continuity estimate [Formula: see text] for [Formula: see text], where [Formula: see text] depends on [Formula: see text]. Finally, according to a theorem of Goffman–Moran–Waterman, any regulated function of compact support has bounded [Formula: see text]-variation for some [Formula: see text]. As a corollary we thus have: if [Formula: see text] is a regulated function, so is [Formula: see text] for all [Formula: see text]. 
    more » « less
  2. Let [Formula: see text] be a set of positive integers, [Formula: see text] denoting the largest element, so that for any two of the [Formula: see text] subsets the sum of all elements is distinct. Erdős asked whether this implies [Formula: see text] for some universal [Formula: see text]. We prove, slightly extending a result of Elkies, that for any [Formula: see text], [Formula: see text] with equality if and only if all subset sums are [Formula: see text]-separated. This leads to a new proof of the currently best lower bound [Formula: see text]. The main new insight is that having distinct subset sums and [Formula: see text] small requires the random variable [Formula: see text] to be close to Gaussian in a precise sense. 
    more » « less
  3. In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so. 
    more » « less
  4. For generalized Korteweg–De Vries (KdV) models with polynomial nonlinearity, we establish a local smoothing property in [Formula: see text] for [Formula: see text]. Such smoothing effect persists globally, provided that the [Formula: see text] norm does not blow up in finite time. More specifically, we show that a translate of the nonlinear part of the solution gains [Formula: see text] derivatives for [Formula: see text]. Following a new simple method, which is of independent interest, we establish that, for [Formula: see text], [Formula: see text] norm of a solution grows at most by [Formula: see text] if [Formula: see text] norm is a priori controlled. 
    more » « less
  5. This paper is a sequel to [Monatsh. Math. 194 (2021) 523–554] in which results of that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approximation. Given any integers [Formula: see text] and [Formula: see text], any [Formula: see text], and any homogeneous function [Formula: see text] that satisfies a certain nonsingularity assumption, we obtain a biconditional criterion on the approximating function [Formula: see text] for a generic element [Formula: see text] in the [Formula: see text]-orbit of [Formula: see text] to be (respectively, not to be) [Formula: see text]-approximable at [Formula: see text]: that is, for there to exist infinitely many (respectively, only finitely many) [Formula: see text] such that [Formula: see text] for each [Formula: see text]. In this setting, we also obtain a sufficient condition for uniform approximation. We also consider some examples of [Formula: see text] that do not satisfy our nonsingularity assumptions and prove similar results for these examples. Moreover, one can replace [Formula: see text] above by any closed subgroup of [Formula: see text] that satisfies certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the aforementioned previous paper. 
    more » « less