skip to main content

Search for: All records

Award ID contains: 1720374

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract There is a rich connection between classical error-correcting codes, Euclidean lattices, and chiral conformal field theories. Here we show that quantum error-correcting codes, those of the stabilizer type, are related to Lorentzian lattices and non-chiral CFTs. More specifically, real self-dual stabilizer codes can be associated with even self-dual Lorentzian lattices, and thus define Narain CFTs. We dub the resulting theories code CFTs and study their properties. T-duality transformations of a code CFT, at the level of the underlying code, reduce to code equivalences. By means of such equivalences, any stabilizer code can be reduced to a graph code. We can therefore represent code CFTs by graphs. We study code CFTs with small central charge c = n ≤ 12, and find many interesting examples. Among them is a non-chiral E 8 theory, which is based on the root lattice of E 8 understood as an even self-dual Lorentzian lattice. By analyzing all graphs with n ≤ 8 nodes we find many pairs and triples of physically distinct isospectral theories. We also construct numerous modular invariant functions satisfying all the basic properties expected of the CFT partition function, yet which are not partition functions of any known CFTs. Wemore »consider the ensemble average over all code theories, calculate the corresponding partition function, and discuss its possible holographic interpretation. The paper is written in a self-contained manner, and includes an extensive pedagogical introduction and many explicit examples.« less
  2. A bstract Studies of Eigenstate Thermalization Hypothesis (ETH) in two-dimensional CFTs call for calculation of the expectation values of local operators in highly excited energy eigenstates. This can be done efficiently by representing zero modes of these operators in terms of the Virasoro algebra generators. In this paper we present a pedagogical introduction explaining how this calculation can be performed analytically or using computer algebra. We illustrate the computation of zero modes by a number of examples and list explicit expressions for all local operators from the vacuum family with the dimension of less or equal than eight. Finally, we derive an explicit expression for the quantum KdV generator Q 7 in terms of the Virasoro algebra generators. The obtained results can be used for quantitative studies of ETH at finite value of central charge.