- Award ID(s):
- 1720374
- NSF-PAR ID:
- 10282602
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We discuss the holographic description of Narain U(1) c × U(1) c conformal field theories, and their potential similarity to conventional weakly coupled gravitational theories in the bulk, in the sense that the effective IR bulk description includes “U(1) gravity” amended with additional light degrees of freedom. Starting from this picture, we formulate the hypothesis that in the large central charge limit the density of states of any Narain theory is bounded by below by the density of states of U(1) gravity. This immediately implies that the maximal value of the spectral gap for primary fields is ∆ 1 = c /(2 πe ). To test the self-consistency of this proposal, we study its implications using chiral lattice CFTs and CFTs based on quantum stabilizer codes. First we notice that the conjecture yields a new bound on quantum stabilizer codes, which is compatible with previously known bounds in the literature. We proceed to discuss the variance of the density of states, which for consistency must be vanishingly small in the large- c limit. We consider ensembles of code and chiral theories and show that in both cases the density variance is exponentially small in the central charge.more » « less
-
A bstract We construct a map between a class of codes over F 4 and a family of non-rational Narain CFTs. This construction is complementary to a recently introduced relation between quantum stabilizer codes and a class of rational Narain theories. From the modular bootstrap point of view we formulate a polynomial ansatz for the partition function which reduces modular invariance to a handful of algebraic easy-to-solve constraints. For certain small values of central charge our construction yields optimal theories, i.e. those with the largest value of the spectral gap.more » « less
-
A bstract We give a general construction relating Narain rational conformal field theories (RCFTs) and associated 3d Chern-Simons (CS) theories to quantum stabilizer codes. Starting from an abelian CS theory with a fusion group consisting of
n even-order factors, we map a boundary RCFT to ann -qubit quantum code. When the relevant ’t Hooft anomalies vanish, we can orbifold our RCFTs and describe this gauging at the level of the code. Along the way, we give CFT interpretations of the code subspace and the Hilbert space of qubits while mapping error operations to CFT defect fields. -
Concatenating bosonic error-correcting codes with qubit codes can substantially boost the error correcting power of the original qubit codes. It is not clear how to concatenate optimally, given that there are several bosonic codes and concatenation schemes to choose from, including the recently discovered Gottesman-Kitaev-Preskill (GKP) – stabilizer codes [Phys. Rev. Lett. 125, 080503 (2020)] that allow protection of a logical bosonic mode from fluctuations of the conjugate variables of the mode. We develop efficient maximum-likelihood decoders for and analyze the performance of three different concatenations of codes taken from the following set: qubit stabilizer codes, analog or Gaussian stabilizer codes, GKP codes, and GKP-stabilizer codes. We benchmark decoder performance against additive Gaussian white noise, corroborating our numerics with analytical calculations. We observe that the concatenation involving GKP-stabilizer codes outperforms the more conventional concatenation of a qubit stabilizer code with a GKP code in some cases. We also propose a GKP-stabilizer code that suppresses fluctuations in both conjugate variables without extra quadrature squeezing and formulate qudit versions of GKP-stabilizer codes.more » « less
-
Utilizing the framework of
lattice gauge theories in the context of Pauli stabilizer codes, we present methodologies for simulating fermions via qubit systems on a two-dimensional square lattice. We investigate the symplectic automorphisms of the Pauli module over the Laurent polynomial ring. This enables us to systematically increase the code distances of stabilizer codes while fixing the rate between encoded logical fermions and physical qubits. We identify a family of stabilizer codes suitable for fermion simulation, achieving code distances of d=2,3,4,5,6,7, allowing correction of any\mathbb{Z}_2 -qubit error. In contrast to the traditional code concatenation approach, our method can increase the code distances without decreasing the (fermionic) code rate. In particular, we explicitly show all stabilizers and logical operators for codes with code distances of d=3,4,5. We provide syndromes for all Pauli errors and invent a syndrome-matching algorithm to compute code distances numerically.\lfloor \frac{d-1}{2} \rfloor