skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1720875

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Risk assessment of infrastructure exposed to ice-rich permafrost hazards is essential for climate change adaptation in the Arctic. As this process requires up-to-date, comprehensive, high-resolution maps of human-built infrastructure, gaps in such geospatial information and knowledge of the applications required to produce it must be addressed. Therefore, this study highlights the ongoing development of a deep learning approach to efficiently map the Arctic built environment by detecting nine different types of structures (detached houses, row houses, multi-story blocks, non-residential buildings, roads, runways, gravel pads, pipelines, and storage tanks) from recently-acquired Maxar commercial satellite imagery (<1 m resolution). We conducted a multi-objective comparison, focusing on generalization performance and computational cost, of nine different semantic segmentation architectures. K-fold cross validation was used to estimate the average F1-score of each architecture and the Friedman Aligned Ranks test with the Bergmann-Hommel posthoc procedure was applied to test for significant differences in generalization performance. ResNet-50-UNet++ performs significantly better than five out of the other eight candidate architectures; no significant difference was found in the pairwise comparisons of ResNet-50-UNet++ to ResNet-50-MANet, ResNet-101-MANet, and ResNet-101-UNet++. We then conducted a high-performance computing scaling experiment to compare the number of service units and runtime required for model inferencing on a hypothetical pan- Arctic scale dataset. We found that the ResNet-50-UNet++ model could save up to ~ 54% on service unit expenditure, or ~ 18% on runtime, when considering operational deployment of our mapping approach. Our results suggest that ResNet-50-UNet++ could be the most suitable architecture (out of the nine that were examined) for deep learning-enabled Arctic infrastructure mapping efforts. Overall, our findings regarding the differences between the examined CNN architectures and our methodological framework for multi-objective architecture comparison can provide a foundation that may propel future pan-Arctic GeoAI mapping efforts of infrastructure. 
    more » « less
  2. The microtopography associated with ice-wedge polygons governs many aspects of Arctic ecosystem, permafrost, and hydrologic dynamics from local to regional scales owing to the linkages between microtopography and the flow and storage of water, vegetation succession, and permafrost dynamics. Wide-spread ice-wedge degradation is transforming low-centered polygons into high-centered polygons at an alarming rate. Accurate data on spatial distribution of ice-wedge polygons at a pan-Arctic scale are not yet available, despite the availability of sub-meter-scale remote sensing imagery. This is because the necessary spatial detail quickly produces data volumes that hamper both manual and semi-automated mapping approaches across large geographical extents. Accordingly, transforming big imagery into ‘science-ready’ insightful analytics demands novel image-to-assessment pipelines that are fueled by advanced machine learning techniques and high-performance computational resources. In this exploratory study, we tasked a deep-learning driven object instance segmentation method (i.e., the Mask R-CNN) with delineating and classifying ice-wedge polygons in very high spatial resolution aerial orthoimagery. We conducted a systematic experiment to gauge the performances and interoperability of the Mask R-CNN across spatial resolutions (0.15 m to 1 m) and image scene contents (a total of 134 km2) near Nuiqsut, Northern Alaska. The trained Mask R-CNN reported mean average precisions of 0.70 and 0.60 at thresholds of 0.50 and 0.75, respectively. Manual validations showed that approximately 95% of individual ice-wedge polygons were correctly delineated and classified, with an overall classification accuracy of 79%. Our findings show that the Mask R-CNN is a robust method to automatically identify ice-wedge polygons from fine-resolution optical imagery. Overall, this automated imagery-enabled intense mapping approach can provide a foundational framework that may propel future pan-Arctic studies of permafrost thaw, tundra landscape evolution, and the role of high latitudes in the global climate system. 
    more » « less