skip to main content

Title: Deep Convolutional Neural Networks for Automated Characterization of Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery
The microtopography associated with ice-wedge polygons governs many aspects of Arctic ecosystem, permafrost, and hydrologic dynamics from local to regional scales owing to the linkages between microtopography and the flow and storage of water, vegetation succession, and permafrost dynamics. Wide-spread ice-wedge degradation is transforming low-centered polygons into high-centered polygons at an alarming rate. Accurate data on spatial distribution of ice-wedge polygons at a pan-Arctic scale are not yet available, despite the availability of sub-meter-scale remote sensing imagery. This is because the necessary spatial detail quickly produces data volumes that hamper both manual and semi-automated mapping approaches across large geographical extents. Accordingly, transforming big imagery into ‘science-ready’ insightful analytics demands novel image-to-assessment pipelines that are fueled by advanced machine learning techniques and high-performance computational resources. In this exploratory study, we tasked a deep-learning driven object instance segmentation method (i.e., the Mask R-CNN) with delineating and classifying ice-wedge polygons in very high spatial resolution aerial orthoimagery. We conducted a systematic experiment to gauge the performances and interoperability of the Mask R-CNN across spatial resolutions (0.15 m to 1 m) and image scene contents (a total of 134 km2) near Nuiqsut, Northern Alaska. The trained Mask R-CNN reported mean average precisions of 0.70 and 0.60 at thresholds of 0.50 and 0.75, respectively. Manual validations showed that approximately 95% of individual ice-wedge polygons were correctly delineated and classified, with an overall classification accuracy of 79%. Our findings show that the Mask R-CNN is a robust method to automatically identify ice-wedge polygons from fine-resolution optical imagery. Overall, this automated imagery-enabled intense mapping approach can provide a foundational framework that may propel future pan-Arctic studies of permafrost thaw, tundra landscape evolution, and the role of high latitudes in the global climate system.  more » « less
Award ID(s):
1720875 1722572 1721030
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Remote Sensing
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Permafrost thaw has been observed at several locations across the Arctic tundra in recent decades; however, the pan-Arctic extent and spatiotemporal dynamics of thaw remains poorly explained. Thaw-induced differential ground subsidence and dramatic microtopographic transitions, such as transformation of low-centered ice-wedge polygons (IWPs) into high-centered IWPs can be characterized using very high spatial resolution (VHSR) commercial satellite imagery. Arctic researchers demand for an accurate estimate of the distribution of IWPs and their status across the tundra domain. The entire Arctic has been imaged in 0.5 m resolution by commercial satellite sensors; however, mapping efforts are yet limited to small scales and confined to manual or semi-automated methods. Knowledge discovery through artificial intelligence (AI), big imagery, and high performance computing (HPC) resources is just starting to be realized in Arctic science. Large-scale deployment of VHSR imagery resources requires sophisticated computational approaches to automated image interpretation coupled with efficient use of HPC resources. We are in the process of developing an automated Mapping Application for Permafrost Land Environment (MAPLE) by combining big imagery, AI, and HPC resources. The MAPLE uses deep learning (DL) convolutional neural nets (CNNs) algorithms on HPCs to automatically map IWPs from VHSR commercial satellite imagery across large geographic domains. We trained and tasked a DLCNN semantic object instance segmentation algorithm to automatically classify IWPs from VHSR satellite imagery. Overall, our findings demonstrate the robust performances of IWP mapping algorithm in diverse tundra landscapes and lay a firm foundation for its operational-level application in repeated documentation of circumpolar permafrost disturbances.

    more » « less
  2. Abstract. The microtopography associated with ice wedge polygons (IWPs) governs the Arctic ecosystem from local to regional scales due to the impacts on the flow and storage of water and therefore, vegetation and carbon. Increasing subsurface temperatures in Arctic permafrost landscapes cause differential ground settlements followed by a series of adverse microtopographic transitions at sub decadal scale. The entire Arctic has been imaged at 0.5 m or finer resolution by commercial satellite sensors. Dramatic microtopographic transformation of low-centered into high-centered IWPs can be identified using sub-meter resolution commercial satellite imagery. In this exploratory study, we have employed a Deep Learning (DL)-based object detection and semantic segmentation method named the Mask R-CNN to automatically map IWPs from commercial satellite imagery. Different tundra vegetation types have distinct spectral, spatial, textural characteristics, which in turn decide the semantics of overlying IWPs. Landscape complexity translates to the image complexity, affecting DL model performances. Scarcity of labelled training images, inadequate training samples for some types of tundra and class imbalance stand as other key challenges in this study. We implemented image augmentation methods to introduce variety in the training data and trained models separately for tundra types. Augmentation methods show promising results but the models with separate tundra types seem to suffer from the lack of annotated data.

    more » « less
  3. State-of-the-art deep learning technology has been successfully applied to relatively small selected areas of very high spatial resolution (0.15 and 0.25 m) optical aerial imagery acquired by a fixed-wing aircraft to automatically characterize ice-wedge polygons (IWPs) in the Arctic tundra. However, any mapping of IWPs at regional to continental scales requires images acquired on different sensor platforms (particularly satellite) and a refined understanding of the performance stability of the method across sensor platforms through reliable evaluation assessments. In this study, we examined the transferability of a deep learning Mask Region-Based Convolutional Neural Network (R-CNN) model for mapping IWPs in satellite remote sensing imagery (~0.5 m) covering 272 km2 and unmanned aerial vehicle (UAV) (0.02 m) imagery covering 0.32 km2. Multi-spectral images were obtained from the WorldView-2 satellite sensor and pan-sharpened to ~0.5 m, and a 20 mp CMOS sensor camera onboard a UAV, respectively. The training dataset included 25,489 and 6022 manually delineated IWPs from satellite and fixed-wing aircraft aerial imagery near the Arctic Coastal Plain, northern Alaska. Quantitative assessments showed that individual IWPs were correctly detected at up to 72% and 70%, and delineated at up to 73% and 68% F1 score accuracy levels for satellite and UAV images, respectively. Expert-based qualitative assessments showed that IWPs were correctly detected at good (40–60%) and excellent (80–100%) accuracy levels for satellite and UAV images, respectively, and delineated at excellent (80–100%) level for both images. We found that (1) regardless of spatial resolution and spectral bands, the deep learning Mask R-CNN model effectively mapped IWPs in both remote sensing satellite and UAV images; (2) the model achieved a better accuracy in detection with finer image resolution, such as UAV imagery, yet a better accuracy in delineation with coarser image resolution, such as satellite imagery; (3) increasing the number of training data with different resolutions between the training and actual application imagery does not necessarily result in better performance of the Mask R-CNN in IWPs mapping; (4) and overall, the model underestimates the total number of IWPs particularly in terms of disjoint/incomplete IWPs. 
    more » « less
  4. Commercial satellite sensors offer the luxury of mapping of individual permafrost features and their change over time. Deep learning convolutional neural nets (CNNs) demonstrate a remarkable success in automated image analysis. Inferential strengths ofCNNmodels are driven primarily by the quality and volume of hand-labeled training samples. Production of hand-annotated samples is a daunting task. This is particularly true for regional-scale mapping applications, such as permafrost feature detection across the Arctic. Image augmentation is a strategic data-space solution to synthetically inflate the size and quality of training samples by transforming the color space or geometric shape or by injecting noise. In this study, we systematically investigate the effectiveness of a spectrum of augmentation methods when applied toCNNalgorithms to recognize ice-wedge polygons from commercial satellite imagery. Our findings suggest that a list of augmentation methods (such as hue, saturation, and salt and pepper noise) can increase the model performance.

    more » « less
  5. Rapid global warming is catalyzing widespread permafrost degradation in the Arctic, leading to destructive land-surface subsidence that destabilizes and deforms the ground. Consequently, human-built infrastructure constructed upon permafrost is currently at major risk of structural failure. Risk assessment frameworks that attempt to study this issue assume that precise information on the location and extent of infrastructure is known. However, complete, high-quality, uniform geospatial datasets of built infrastructure that are readily available for such scientific studies are lacking. While imagery-enabled mapping can fill this knowledge gap, the small size of individual structures and vast geographical extent of the Arctic necessitate large volumes of very high spatial resolution remote sensing imagery. Transforming this ‘big’ imagery data into ‘science-ready’ information demands highly automated image analysis pipelines driven by advanced computer vision algorithms. Despite this, previous fine resolution studies have been limited to manual digitization of features on locally confined scales. Therefore, this exploratory study serves as the first investigation into fully automated analysis of sub-meter spatial resolution satellite imagery for automated detection of Arctic built infrastructure. We tasked the U-Net, a deep learning-based semantic segmentation model, with classifying different infrastructure types (residential, commercial, public, and industrial buildings, as well as roads) from commercial satellite imagery of Utqiagvik and Prudhoe Bay, Alaska. We also conducted a systematic experiment to understand how image augmentation can impact model performance when labeled training data is limited. When optimal augmentation methods were applied, the U-Net achieved an average F1 score of 0.83. Overall, our experimental findings show that the U-Net-based workflow is a promising method for automated Arctic built infrastructure detection that, combined with existing optimized workflows, such as MAPLE, could be expanded to map a multitude of infrastructure types spanning the pan-Arctic.

    more » « less