Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose and analyze batch greedy heuristics for cardinality constrained maximization of non-submodular non-decreasing set functions. We consider the standard greedy paradigm, along with its distributed greedy and stochastic greedy variants. Our theoretical guarantees are characterized by the combination of submodularity and supermodularity ratios. We argue how these parameters define tight modular bounds based on incremental gains, and provide a novel reinterpretation of the classical greedy algorithm using the minorize maximize (MM) principle. Based on that analogy, we propose a new class of methods exploiting any plausible modular bound. In the context of optimal experimental design for linear Bayesian inverse problems, we bound the submodularity and supermodularity ratios when the underlying objective is based on mutual information. We also develop novel modular bounds for the mutual information in this setting, and describe certain connections to polyhedral combinatorics. We discuss how algorithms using these modular bounds relate to established statistical notions such as leverage scores and to more recent efforts such as volume sampling. We demonstrate our theoretical findings on synthetic problems and on a real-world climate monitoring example.more » « less
-
null (Ed.)Abstract. Satellite remote sensing provides a global view to processes on Earth that has unique benefits compared to making measurements on the ground, such as global coverage and enormous data volume. The typical downsides are spatial and temporal gaps and potentially low data quality. Meaningful statistical inference from such data requires overcoming these problems and developing efficient and robust computational tools.We design and implement a computationally efficient multi-scale Gaussian process (GP) software package, satGP, geared towards remote sensing applications. The software is able to handle problems of enormous sizes and to compute marginals and sample from the random field conditioning on at least hundreds of millions of observations. This is achieved by optimizing the computation by, e.g., randomization and splitting the problem into parallel local subproblems which aggressively discard uninformative data. We describe the mean function of the Gaussian process by approximating marginals of a Markov random field (MRF). Variability around the mean is modeled with a multi-scale covariance kernel, which consists of Matérn, exponential, and periodic components. We also demonstrate how winds can be used to inform covariances locally.The covariance kernel parameters are learned by calculating an approximate marginal maximum likelihood estimate, and the validity of both the multi-scale approach and the method used to learn the kernel parameters is verified in synthetic experiments. We apply these techniques to a moderate size ozone data set produced by an atmospheric chemistry model and to the very large number of observations retrieved from the Orbiting Carbon Observatory 2 (OCO-2) satellite. The satGP software is released under an open-source license.more » « less
An official website of the United States government

Full Text Available