skip to main content


Title: Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
Abstract. Satellite remote sensing provides a global view to processes on Earth that has unique benefits compared to making measurements on the ground, such as global coverage and enormous data volume. The typical downsides are spatial and temporal gaps and potentially low data quality. Meaningful statistical inference from such data requires overcoming these problems and developing efficient and robust computational tools.We design and implement a computationally efficient multi-scale Gaussian process (GP) software package, satGP, geared towards remote sensing applications. The software is able to handle problems of enormous sizes and to compute marginals and sample from the random field conditioning on at least hundreds of millions of observations. This is achieved by optimizing the computation by, e.g., randomization and splitting the problem into parallel local subproblems which aggressively discard uninformative data. We describe the mean function of the Gaussian process by approximating marginals of a Markov random field (MRF). Variability around the mean is modeled with a multi-scale covariance kernel, which consists of Matérn, exponential, and periodic components. We also demonstrate how winds can be used to inform covariances locally.The covariance kernel parameters are learned by calculating an approximate marginal maximum likelihood estimate, and the validity of both the multi-scale approach and the method used to learn the kernel parameters is verified in synthetic experiments. We apply these techniques to a moderate size ozone data set produced by an atmospheric chemistry model and to the very large number of observations retrieved from the Orbiting Carbon Observatory 2 (OCO-2) satellite. The satGP software is released under an open-source license.  more » « less
Award ID(s):
1723011
NSF-PAR ID:
10206573
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
13
Issue:
7
ISSN:
1991-9603
Page Range / eLocation ID:
3439 to 3463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Remote sensing data have been widely used to study various geophysical processes. With the advances in remote sensing technology, massive amount of remote sensing data are collected in space over time. Different satellite instruments typically have different footprints, measurement‐error characteristics, and data coverages. To combine data sets from different satellite instruments, we propose a dynamic fused Gaussian process (DFGP) model that enables fast statistical inference such as filtering and smoothing for massive spatio‐temporal data sets in a data‐fusion context. Based upon a spatio‐temporal‐random‐effect model, the DFGP methodology represents the underlying true process with two components: a linear combination of a small number of basis functions and random coefficients with a general covariance matrix, together with a linear combination of a large number of basis functions and Markov random coefficients. To model the underlying geophysical process at different spatial resolutions, we rely on the change‐of‐support property, which also allows efficient computations in the DFGP model. To estimate model parameters, we devise a computationally efficient stochastic expectation‐maximization algorithm to ensure its scalability for massive data sets. The DFGP model is applied to a total of 3.7 million sea surface temperature data sets in the tropical Pacific Ocean for a one‐week time period in 2010 from Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer‐Earth Observing System (AMSR‐E) instruments.

     
    more » « less
  2. Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel. 
    more » « less
  3. Abstract. Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges for standard inverse modeling frameworks that were often originally designed with much smaller data sets in mind. In this article, we discuss computationally efficient methods for large-scale atmospheric inverse modeling and focus on addressing some of the main computational and practical challenges. We develop generalized hybrid projection methods, which are iterative methods for solving large-scale inverse problems, and specifically we focus on the case of estimating surface fluxes. These algorithms confer several advantages. They are efficient, in part because they converge quickly, they exploit efficient matrix–vector multiplications, and they do not require inversion of any matrices. These methods are also robust because they can accurately reconstruct surface fluxes, they are automatic since regularization or covariance matrix parameters and stopping criteria can be determined as part of the iterative algorithm, and they are flexible because they can be paired with many different types of atmospheric models. We demonstrate the benefits of generalized hybrid methods with a case study from NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite. We then address the more challenging problem of solving the inverse model when the mean of the surface fluxes is not known a priori; we do so by reformulating the problem, thereby extending the applicability of hybrid projection methods to include hierarchical priors. We further show that by exploiting mathematical relations provided by the generalized hybrid method, we can efficiently calculate an approximate posterior variance, thereby providing uncertainty information. 
    more » « less
  4. Table of Contents: Foreword by the CI 2016 Workshop Chairs …………………………………vi Foreword by the CI 2016 Steering Committee ..…………………………..…..viii List of Organizing Committee ………………………….……....x List of Registered Participants .………………………….……..xi Acknowledgement of Sponsors ……………………………..…xiv Hackathon and Workshop Agenda .………………………………..xv Hackathon Summary .………………………….…..xviii Invited talks - abstracts and links to presentations ………………………………..xxi Proceedings: 34 short research papers ……………………………….. 1-135 Papers 1. BAYESIAN MODELS FOR CLIMATE RECONSTRUCTION FROM POLLEN RECORDS ..................................... 1 Lasse Holmström, Liisa Ilvonen, Heikki Seppä, Siim Veski 2. ON INFORMATION CRITERIA FOR DYNAMIC SPATIO-TEMPORAL CLUSTERING ..................................... 5 Ethan D. Schaeffer, Jeremy M. Testa, Yulia R. Gel, Vyacheslav Lyubchich 3. DETECTING MULTIVARIATE BIOSPHERE EXTREMES ..................................... 9 Yanira Guanche García, Erik Rodner, Milan Flach, Sebastian Sippel, Miguel Mahecha, Joachim Denzler 4. SPATIO-TEMPORAL GENERATIVE MODELS FOR RAINFALL OVER INDIA ..................................... 13 Adway Mitra 5. A NONPARAMETRIC COPULA BASED BIAS CORRECTION METHOD FOR STATISTICAL DOWNSCALING ..................................... 17 Yi Li, Adam Ding, Jennifer Dy 6. DETECTING AND PREDICTING BEAUTIFUL SUNSETS USING SOCIAL MEDIA DATA ..................................... 21 Emma Pierson 7. OCEANTEA: EXPLORING OCEAN-DERIVED CLIMATE DATA USING MICROSERVICES ..................................... 25 Arne N. Johanson, Sascha Flögel, Wolf-Christian Dullo, Wilhelm Hasselbring 8. IMPROVED ANALYSIS OF EARTH SYSTEM MODELS AND OBSERVATIONS USING SIMPLE CLIMATE MODELS ..................................... 29 Balu Nadiga, Nathan Urban 9. SYNERGY AND ANALOGY BETWEEN 15 YEARS OF MICROWAVE SST AND ALONG-TRACK SSH ..................................... 33 Pierre Tandeo, Aitor Atencia, Cristina Gonzalez-Haro 10. PREDICTING EXECUTION TIME OF CLIMATE-DRIVEN ECOLOGICAL FORECASTING MODELS ..................................... 37 Scott Farley and John W. Williams 11. SPATIOTEMPORAL ANALYSIS OF SEASONAL PRECIPITATION OVER US USING CO-CLUSTERING ..................................... 41 Mohammad Gorji–Sefidmazgi, Clayton T. Morrison 12. PREDICTION OF EXTREME RAINFALL USING HYBRID CONVOLUTIONAL-LONG SHORT TERM MEMORY NETWORKS ..................................... 45 Sulagna Gope, Sudeshna Sarkar, Pabitra Mitra 13. SPATIOTEMPORAL PATTERN EXTRACTION WITH DATA-DRIVEN KOOPMAN OPERATORS FOR CONVECTIVELY COUPLED EQUATORIAL WAVES ..................................... 49 Joanna Slawinska, Dimitrios Giannakis 14. COVARIANCE STRUCTURE ANALYSIS OF CLIMATE MODEL OUTPUT ..................................... 53 Chintan Dalal, Doug Nychka, Claudia Tebaldi 15. SIMPLE AND EFFICIENT TENSOR REGRESSION FOR SPATIOTEMPORAL FORECASTING ..................................... 57 Rose Yu, Yan Liu 16. TRACKING OF TROPICAL INTRASEASONAL CONVECTIVE ANOMALIES ..................................... 61 Bohar Singh, James L. Kinter 17. ANALYSIS OF AMAZON DROUGHTS USING SUPERVISED KERNEL PRINCIPAL COMPONENT ANALYSIS ..................................... 65 Carlos H. R. Lima, Amir AghaKouchak 18. A BAYESIAN PREDICTIVE ANALYSIS OF DAILY PRECIPITATION DATA ..................................... 69 Sai K. Popuri, Nagaraj K. Neerchal, Amita Mehta 19. INCORPORATING PRIOR KNOWLEDGE IN SPATIO-TEMPORAL NEURAL NETWORK FOR CLIMATIC DATA ..................................... 73 Arthur Pajot, Ali Ziat, Ludovic Denoyer, Patrick Gallinari 20. DIMENSIONALITY-REDUCTION OF CLIMATE DATA USING DEEP AUTOENCODERS ..................................... 77 Juan A. Saenz, Nicholas Lubbers, Nathan M. Urban 21. MAPPING PLANTATION IN INDONESIA ..................................... 81 Xiaowei Jia, Ankush Khandelwal, James Gerber, Kimberly Carlson, Paul West, Vipin Kumar 22. FROM CLIMATE DATA TO A WEIGHTED NETWORK BETWEEN FUNCTIONAL DOMAINS ..................................... 85 Ilias Fountalis, Annalisa Bracco, Bistra Dilkina, Constantine Dovrolis 23. EMPLOYING SOFTWARE ENGINEERING PRINCIPLES TO ENHANCE MANAGEMENT OF CLIMATOLOGICAL DATASETS FOR CORAL REEF ANALYSIS ..................................... 89 Mark Jenne, M.M. Dalkilic, Claudia Johnson 24. Profiler Guided Manual Optimization for Accelerating Cholesky Decomposition on R Environment ..................................... 93 V.B. Ramakrishnaiah, R.P. Kumar, J. Paige, D. Hammerling, D. Nychka 25. GLOBAL MONITORING OF SURFACE WATER EXTENT DYNAMICS USING SATELLITE DATA ..................................... 97 Anuj Karpatne, Ankush Khandelwal and Vipin Kumar 26. TOWARD QUANTIFYING TROPICAL CYCLONE RISK USING DIAGNOSTIC INDICES .................................... 101 Erica M. Staehling and Ryan E. Truchelut 27. OPTIMAL TROPICAL CYCLONE INTENSITY ESTIMATES WITH UNCERTAINTY FROM BEST TRACK DATA .................................... 105 Suz Tolwinski-Ward 28. EXTREME WEATHER PATTERN DETECTION USING DEEP CONVOLUTIONAL NEURAL NETWORK .................................... 109 Yunjie Liu, Evan Racah, Prabhat, Amir Khosrowshahi, David Lavers, Kenneth Kunkel, Michael Wehner, William Collins 29. INFORMATION TRANSFER ACROSS TEMPORAL SCALES IN ATMOSPHERIC DYNAMICS .................................... 113 Nikola Jajcay and Milan Paluš 30. Identifying precipitation regimes in China using model-based clustering of spatial functional data .................................... 117 Haozhe Zhang, Zhengyuan Zhu, Shuiqing Yin 31. RELATIONAL RECURRENT NEURAL NETWORKS FOR SPATIOTEMPORAL INTERPOLATION FROM MULTI-RESOLUTION CLIMATE DATA .................................... 121 Guangyu Li, Yan Liu 32. OBJECTIVE SELECTION OF ENSEMBLE BOUNDARY CONDITIONS FOR CLIMATE DOWNSCALING .................................... 124 Andrew Rhines, Naomi Goldenson 33. LONG-LEAD PREDICTION OF EXTREME PRECIPITATION CLUSTER VIA A SPATIO-TEMPORAL CONVOLUTIONAL NEURAL NETWORK .................................... 128 Yong Zhuang, Wei Ding 34. MULTIPLE INSTANCE LEARNING FOR BURNED AREA MAPPING USING MULTI –TEMPORAL REFLECTANCE DATA .................................... 132 Guruprasad Nayak, Varun Mithal, Vipin Kumar 
    more » « less
  5. We design fast algorithms for repeatedly sampling from strongly Rayleigh distributions, which include as special cases random spanning tree distributions and determinantal point processes. For a graph $G=(V, E)$, we show how to approximately sample uniformly random spanning trees from $G$ in $\widetilde{O}(\lvert V\rvert)$\footnote{Throughout, $\widetilde{O}(\cdot)$ hides polylogarithmic factors in $n$.} time per sample after an initial $\widetilde{O}(\lvert E\rvert)$ time preprocessing. This is the first nearly-linear runtime in the output size, which is clearly optimal. For a determinantal point process on $k$-sized subsets of a ground set of $n$ elements, defined via an $n\times n$ kernel matrix, we show how to approximately sample in $\widetilde{O}(k^\omega)$ time after an initial $\widetilde{O}(nk^{\omega-1})$ time preprocessing, where $\omega<2.372864$ is the matrix multiplication exponent. The time to compute just the weight of the output set is simply $\simeq k^\omega$, a natural barrier that suggests our runtime might be optimal for determinantal point processes as well. As a corollary, we even improve the state of the art for obtaining a single sample from a determinantal point process, from the prior runtime of $\widetilde{O}(\min\{nk^2, n^\omega\})$ to $\widetilde{O}(nk^{\omega-1})$. In our main technical result, we achieve the optimal limit on domain sparsification for strongly Rayleigh distributions. In domain sparsification, sampling from a distribution $\mu$ on $\binom{[n]}{k}$ is reduced to sampling from related distributions on $\binom{[t]}{k}$ for $t\ll n$. We show that for strongly Rayleigh distributions, the domain size can be reduced to nearly linear in the output size $t=\widetilde{O}(k)$, improving the state of the art from $t= \widetilde{O}(k^2)$ for general strongly Rayleigh distributions and the more specialized $t=\widetilde{O}(k^{1.5})$ for spanning tree distributions. Our reduction involves sampling from $\widetilde{O}(1)$ domain-sparsified distributions, all of which can be produced efficiently assuming approximate overestimates for marginals of $\mu$ are known and stored in a convenient data structure. Having access to marginals is the discrete analog of having access to the mean and covariance of a continuous distribution, or equivalently knowing ``isotropy'' for the distribution, the key behind optimal samplers in the continuous setting based on the famous Kannan-Lov\'asz-Simonovits (KLS) conjecture. We view our result as analogous in spirit to the KLS conjecture and its consequences for sampling, but rather for discrete strongly Rayleigh measures. 
    more » « less