- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dandekar, Kapil R. (2)
-
Jacovic, Marko (2)
-
Mainland, Geoffrey (2)
-
Begashaw, Simon (1)
-
Kraus, Martin (1)
-
Lackpour, Alex (1)
-
Rasheed, Ilhaan (1)
-
Rey, Xaime Rivas (1)
-
Sahin, Cem (1)
-
Shaher, Sharif (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Traditional approaches to experimental characterization of wireless communication systems typically involves highly specialized and small-scale experiments to examine narrow aspects of each of these applications. We present the Grid SDR testbed, a unified experimental framework to rapidly prototype and evaluate these diverse systems using: (i) field measurements to evaluate real time transceiver and channel-specific effects and (ii) network emulation to evaluate systems at a large scale with controllable and repeatable channels. We present the hardware and software architecture for our testbed, and describe how it being used for research and education. Specifically, we show experimental network layer metrics in different application domains, and discuss future opportunities using this unique experimental capability.more » « less
-
Jacovic, Marko; Kraus, Martin; Mainland, Geoffrey; Dandekar, Kapil R. (, 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON))As aspects of our daily lives become more interconnected with the emergence of the Internet of Things (IoT), it is imperative that our devices are reliable and secure from threats. Vulnerabilities of Wi-Fi Protected Access (WPA/WPA2) have been exposed in the past, motivating the use of multiple security techniques, even with the release of WPA3. Physical layer security leverages existing components of communication systems to enable methods of protecting devices that are well-suited for IoT applications. In this work, we provide a low-complexity technique for generating secret keys at the Physical layer to enable improved IoT security. We leverage the existing carrier frequency offset (CFO) and channel estimation components of Orthogonal Frequency Division Multiplexing (OFDM) receivers for an efficient approach. The key generation algorithm we propose focuses on the unique CFO and channel experienced between a pair of desired nodes, and to the best of our understanding, the combination of the features has not been examined previously for the purpose of secret key generation. Our techniques are appropriate for IoT devices, as they do not require extensive processing capabilities and are based on second order statistics. We obtain experimental results using USRP N210 software defined radios and analyze the performance of our methods in post-processing. Our techniques improve the capability of desired nodes to establish matching secret keys, while hindering the threat of an eavesdropper, and are useful for protecting future IoT devices.more » « less
An official website of the United States government
