skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Grid Software Defined Radio Network Testbed for Hybrid Measurement and Emulation
Traditional approaches to experimental characterization of wireless communication systems typically involves highly specialized and small-scale experiments to examine narrow aspects of each of these applications. We present the Grid SDR testbed, a unified experimental framework to rapidly prototype and evaluate these diverse systems using: (i) field measurements to evaluate real time transceiver and channel-specific effects and (ii) network emulation to evaluate systems at a large scale with controllable and repeatable channels. We present the hardware and software architecture for our testbed, and describe how it being used for research and education. Specifically, we show experimental network layer metrics in different application domains, and discuss future opportunities using this unique experimental capability.  more » « less
Award ID(s):
1828236 1738070 1723606 1730140 1717088
PAR ID:
10118257
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) (SECON 2019)
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The transformation of innovative research ideas to production systems is highly dependent on the capability of performing realistic and reproducible network experiments. In this work, we present a network testbed consisting of container-based network emulation and physical devices to advocate high fidelity and reproducible networking experiments. The testbed integrates network emulators (Mininet), a distributed control environment (ONOS), and physical switches (Pica8). The testbed (1) offers functional fidelity through unmodified code execution in emulated networks, (2) supports large-scale network experiments using lightweight OS-level virtualization techniques and capable of running across distributed physical machines, (3) provides the topology flexibility, and (4) enhances the repeatability and reproducibility of network experiments. We validate the testbed fidelity through extensive experiments under different network conditions (e.g., varying topology and traffic pattern). We also use the testbed to reproduce key results from published network experiments, such as Hedera, a scalable and adaptive network traffic flow scheduling system. 
    more » « less
  2. Owing1 to an immense growth of internet-connected and learning-enabled cyber-physical systems (CPSs) [1], several new types of attack vectors have emerged. Analyzing security and resilience of these complex CPSs is difficult as it requires evaluating many subsystems and factors in an integrated manner. Integrated simulation of physical systems and communication network can provide an underlying framework for creating a reusable and configurable testbed for such analyses. Using a model-based integration approach and the IEEE High-Level Architecture (HLA) [2] based distributed simulation software; we have created a testbed for integrated evaluation of large-scale CPS systems. Our tested supports web-based collaborative metamodeling and modeling of CPS system and experiments and a cloud computing environment for executing integrated networked co-simulations. A modular and extensible cyber-attack library enables validating the CPS under a variety of configurable cyber-attacks, such as DDoS and integrity attacks. Hardware-in-the-loop simulation is also supported along with several hardware attacks. Further, a scenario modeling language allows modeling of alternative paths (Courses of Actions) that enables validating CPS under different what-if scenarios as well as conducting cyber-gaming experiments. These capabilities make our testbed well suited for analyzing security and resilience of CPS. In addition, the web-based modeling and cloud-hosted execution infrastructure enables one to exercise the entire testbed using simply a web-browser, with integrated live experimental results display. 
    more » « less
  3. We present a unique virtual testbed that combines a data-plane programmable network emulator and a power distribution system simulator to evaluate smart grid security and resilience applications. The testbed employs a virtual time system for effective simulation synchronization and fidelity enhancement. We showcase the advantages of the simulation testbed through an anomaly detection case study. 
    more » « less
  4. The IoT devices are typically shipped with default insecure configurations and vulnerable software stacks rendering host networks exposed to attacks, especially small networks with no administration. We present a network system model for device configuration and operations management. Using this model, we design and implement an autonomous network management platform with device classification and traffic characterization functions integrated in a network gateway. We evaluate the system using a connected home testbed that combines IoT and general-purpose devices. 
    more » « less
  5. The Cloud-Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment (COSMOS) platform is a programmable city-scale shared multi-user advanced wireless testbed that is being deployed in West Harlem of New York City [1]. To keep pace with the significantly increased wireless link bandwidth and to effectively integrate the emerging C-RANs, COSMOS is designed to incorporate a fast programmable core network for providing connections across different computing layers. A key feature of COSMOS is its dark fiber based optical x-haul network that enables both highly flexible, user defined network topologies and experimentation directly in the optical physical layer. The optical architecture of COSMOS was presented in [2]. In this abstract, we present the tools and services designed to configure and monitor the performance of optical paths and topologies of the COSMOS testbed. In particular, we present the SDN framework that allows testbed users to implement experiments with application-driven control of optical and data networking functionalities. 
    more » « less