skip to main content


Search for: All records

Award ID contains: 1726268

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Civil engineering education must be updated to keep pace with the profession and move past a culture of disengagement where technical work is considered separate from societal impact. Civil engineering students need to engage with diversity, equity, inclusion and justice (DEIJ) so they can understand the differential impacts of engineering on individuals from different groups within society. We aim to encourage the transformation of civil engineering education to produce engineers that will be prepared to meaningfully engage with society and advance justice in their future professional roles by providing examples of pedagogical change and analyzing student responses. In this study we implemented new course assignments in an introductory civil engineering course and a civil engineering materials course. In the introductory assignment students were taught to draw systems models and asked to consider social and technical factors contributing to the Hurricane Katrina disaster. In the materials course students completed pre-class readings about a regional highway reconstruction project, including articles about neighborhood opposition to the project, and participated in an in-class discussion. We analyzed student submissions using qualitative content analysis. Students in both courses (33% introductory, 60% materials) described learning about the impact engineering designs had on the community. In the materials class students were asked specifically about the impact of race and wealth on infrastructure decision-making. Student responses showed a wide range in how students understood the history of the situation and dynamics of power and privilege. Errors and limitations in student responses point to specific ways the instructors can improve student learning. Our results demonstrate that the integration of activities about societal impact is possible in technical engineering courses, emphasize the importance of integrating social context and related DEIJ content into technical courses, and provide insights into what students perceived they learned from the activities. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Sustainability is a vital interdisciplinary concept to address within engineering education. Furthermore, the natural connections that exist between sustainability and social justice provide an optimal opportunity to integrate both into curricula. We argue that engineering curricula ought to include sustainability and social justice so future engineers are trained to understand both societal and technical implications of their work, while acknowledging the challenges engineering faculty may face in conceptualizing social justice or social sustainability. We then highlight how new sustainable design rating systems, such as Envision and The Living Building Challenge, embed inclusion and social justice into their ratings and how these sustainability rating systems can help engineering faculty bring social justice into their classrooms in ways that meaningfully link to engineering content. Finally, we present two examples of how sustainability and social justice can be incorporated into the civil engineering curriculum through inclusive pedagogy and new curricula: 1) a semester-long effort to document, design, and improve the inclusive pedagogical practices in a first-year engineering course that included the theme of sustainability throughout much of the class meetings; and 2) a new assignment about the Envision rating system and the societal implications of rebuilding a major component of regional infrastructure. We conclude with recommendations that other instructors can use to begin incorporating social justice in their courses. 
    more » « less
  3. Lisa Benson (Ed.)
    Abstract Background In Spring 2020, the COVID-19 pandemic sent universities into emergency remote education. The pandemic has been disruptive but offers the opportunity to learn about ways to support students in other situations where abrupt changes to teaching and learning are necessary. Purpose/Hypothesis We described the responses of engineering and computer science students to a series of prompts about their experiences with remote learning. Design/Method Data about students' remote learning experiences were collected from undergraduate engineering and computer science students at four different universities through an end-of-semester survey. Descriptive statistics were calculated, and qualitative responses were analyzed using qualitative content analysis through the lenses of master narrative theory and sociocultural theory. Results Student responses revealed how their individual circumstances combined to reduce motivation, create home environments detrimental to completing schoolwork, and increase stress. Many students described the negative impacts of remote learning, but some students found positive aspects of the situation. The majority of students did not indicate a change in their desire or plans to pursue engineering or computer science majors. Conclusions There was wide variation in how students experienced the disruption to university learning during Spring 2020. Implications of this paper can help not only in cases where emergency remote learning is needed in the future but also as universities seek to return to “normal” operations in 2022 and beyond. 
    more » « less
  4. Grinnell, Frederick (Ed.)
    Queer identities are often ignored in diversity initiatives, yet there is a growing body of research that describes notable heterosexist and gender-normative expectations in STEM that lead to unsupportive and discriminatory environments and to the lower persistence of queer individuals. Research on the experiences of queer-spectrum individuals is limited by current demographic practices. In surveys that are queer-inclusive there is no consensus on best practices, and individuals with queer genders and queer sexual, romantic, and related orientations are often lumped together in a general category (e.g. LGBTQ+). We developed two queer-inclusive demographics questions and administered them as part of a larger study in undergraduate engineering and computer science classes (n = 3698), to determine which of three survey types for gender (conventional, queered, open-ended) provided the most robust data and compared responses to national data to determine if students with queer genders and/or queer sexual, romantic, and related orientations were underrepresented in engineering and computer science programs. The gender survey with queer-identity options provided the most robust data, as measured by higher response rates and relatively high rates of disclosing queer identities. The conventional survey (male, female, other) had significantly fewer students disclose queer identities, and the open-ended survey had a significantly higher non-response rate. Allowing for multiple responses on the survey was important: 78% of those with queer gender identities and 9% of those with queer sexual, romantic and related orientations selected multiple identities within the same survey question. Queer students in our study were underrepresented relative to national data. Students who disclosed queer gender identities were 7/100ths of the expected number, and those with queer orientations were under-represented by one-quarter. Further work developing a research-based queered demographics instrument is needed for larger-scale changes in demographics practices, which will help others identify and address barriers that queer-spectrum individuals face in STEM. 
    more » « less