Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Heat transfer in the solid Earth drives processes that modify temperatures, leaving behind a clear signature that we can measure using noble gas thermochronology. This allows us to record the thermal histories of rocks and obtain the timing, rate, and magnitude of phenomena such as erosion, deformation, and fluid flow. This is done by measuring the net balance between the accumulation of noble gas atoms from radioactive decay and their loss by temperature-activated diffusion in mineral grains. Together with knowledge about noble gas diffusion in common minerals, we can then use inverse models of this accumulation–diffusion balance to recover thermal histories. This approach is now a mainstream method by which to study geodynamics and Earth evolution.more » « less
-
Knowledge of the kinetic behavior of He in apatite and other U- and Th-bearing minerals comes largely from detailed step-heating experiments, yet such experiments are time consuming and are rarely performed during routine thermochronological studies using the U-Th/He method. We propose a new analytical method for measuring both the bulk 4He abundance and the kinetics of He release in apatite. Using this method He is extracted from samples by continuous heating using a ramped temperature schedule under static vacuum conditions, and the evolved He is measured periodically as it accumulates in the extraction system. Continuous ramped heating (CRH) experiments can be conducted using instrumentation available in most noble-gas ther- mochronology labs but require particular attention to temperature control, measurement linearity and dynamic range, and suppression of active gases co-evolved with He. CRH experiments require little more time than conventional single-step heating measurements but yield a detailed record of He release not provided by con- ventional methods. Kinetic parameters for He diffusion in Durango apatite derived from continuous heating data agree well with those obtained from published step-heating studies. The continuous record of He release ob- tained from CRH experiments also provides important information about the siting of He and the presence of multiple He components in apatite, some of which may be responsible for anomalous U-Th/He ages and high age dispersion. As such the CRH method shows promise as a useful sample screening tool for apatite U-Th/He thermochronology.more » « less
An official website of the United States government
