skip to main content


Search for: All records

Award ID contains: 1726897

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate that colloidal quantum dots of CdSe and CdSe/ZnS are detected during the photooxidation of MeOH, under broad spectrum illumination (250 mW/cm 2 ). The stepwise photocurrent vs. time response corresponds to single entities adsorbing to the Pt electrode surface irreversibly. The adsorption/desorption of the QDs and the nature of the single entities is discussed. In suspensions, the QDs behave differently depending on the solvent used to suspend the materials. For MeOH, CdSe is not as stable as CdSe/ZnS under constant illumination. The photocurrent expected for single QDs is discussed. The value of the observed photocurrents, > 1 pA is due to the formation of agglomerates consistent with the collision frequency and suspension stability. The observed frequency of collisions for the stepwise photocurrents is smaller than the diffusion-limited cases expected for single QDs colliding with the electrode surface. Dynamic light scattering and scanning electron microscopy studies support the detection of aggregates. The results indicate that the ZnS layer on the CdSe/ZnS material facilitates the detection of single entities by increasing the stability of the nanomaterial. The rate of hole transfer from the QD aggregates to MeOH outcompetes the dissolution of the CdSe core under certain conditions of electron injection to the Pt electrode and in colloidal suspensions of CdSe/ZnS. 
    more » « less
  2. null (Ed.)
    We present the analysis of formaldehyde (HCHO) in anhydrous methanol (CH 3 OH) as a case study to quantify HCHO in non-aqueous samples. At higher concentrations (C > 0.07 M), we detect a product of HCHO, methoxy methanol (MM, CH 3 OCH 2 OH), by Fourier transform infrared spectroscopy, FTIR. Formaldehyde reacts with CH 3 OH, CD 3 OH, and CD 3 OD as shown by FTIR with a characteristic spectral feature around 1,195 cm −1 for CH 3 OH used for the qualitative detection of MM, a formaldehyde derivative in neat methanol. Ab initio calculations support this assignment. The extinction coefficient for 1,195 cm −1 is in the order of 1.4 × 10 2  M −1 cm −1 , which makes the detection limit by FTIR in the order of 0.07 M. For lower concentrations, we performed the quantitative analysis of non-aqueous samples by derivatization with dinitrophenylhydrazine (DNPH). The derivatization uses an aqueous H 2 SO 4 solution to yield the formaldehyde derivatized hydrazone. Ba(OH) 2 removes sulfate ions from the derivatized samples and a final extraction with isobutyl acetate to yield a 1:1 methanol: isobutyl acetate solvent for injection for electrospray ionization (ESI). The ESI analysis gave a linear calibration curve for concentrations from 10 to 200 µM with a time-of-flight analyzer (TOF). The detection and quantification limits are 7.8 and 26 μM, respectively, for a linear correlation with R 2 > 0.99. We propose that the formaldehyde in CH 3 OH is in equilibrium with the MM species, without evidence of HCHO in solution. In the presence of water, the peaks for MM become less resolved, as expected from the well-known equilibria of HCHO that favors the formation of methylene glycol and polymeric species. Our results show that HCHO, in methanol does not exist in the aldehyde form as the main chemical species. Still, HCHO is in equilibrium between the production of MM and the formation of hydrated species in the presence of water. We demonstrate the ESI-MS analysis of HCHO from a non-aqueous TiO 2 suspension in methanol. Detection of HCHO after illumination of the colloid indicates that methanol photooxidation yields formaldehyde in equilibrium with the solvent. 
    more » « less
  3. null (Ed.)
    Abstract Extreme shear deformation is used for several material processing methods and is unavoidable in many engineering applications in which two surfaces are in relative motion against each other while in physical contact. The mechanistic understanding of the microstructural evolution of multi-phase metallic alloys under extreme shear deformation is still in its infancy. Here, we highlight the influence of shear deformation on the microstructural hierarchy and mechanical properties of a binary as-cast Al-4 at.% Si alloy. Shear-deformation-induced grain refinement, multiscale fragmentation of the eutectic Si-lamellae, and metastable solute saturated phases with distinctive defect structures led to a two-fold increase in the flow stresses determined by micropillar compression testing. These results highlight that shear deformation can achieve non-equilibrium microstructures with enhanced mechanical properties in Al–Si alloys. The experimental and computational insights obtained here are especially crucial for developing predictive models for microstructural evolution of metals under extreme shear deformation. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    The copper corrosion was studied for 30 days in two alkaline electrolytes: saturated Ca(OH)2 and cement extract, employed to simulate concrete-pore environments. Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry were carried out at the open circuit potential (OCP), and potentiodynamic polarization (PDP) curves were performed for comparative purposes. Electrochemical current fluctuations, considered as electrochemical noise (EN), were employed as non-destructive methods. The tests revealed that sat. Ca(OH)2 is the less aggressive to the Cu surface, mainly because of the lower in one order pH. In consequence, the OCP values of Cu were more positive, the polarization resistance values were higher by one order of magnitude, and the anodic currents of Cu were lower than those in the cement extract. The analyzed EN indicated that the initial corrosion attacks on the Cu surface are quasi-uniform, resulting from the stationary persistent corrosion process occurring in both model solutions. XPS analysis and X-ray diffraction (XRD) patterns revealed that in sat. Ca(OH)2, a Cu2O/CuO corrosion layer was formed, which effectively protects the metallic Cu-surface. We present evidence for the sequential oxidation of Cu to the (+1) and (+2) species, its impact on the corrosion layer, and also its protective properties. 
    more » « less
  8. null (Ed.)
    We present evidence of the generation of radical ion formation during the oxidation of iodide on a fluorine doped tin oxide (FTO) electrode in acetonitrile. The cyclic voltammograms for the oxidation of iodide and triiodide on FTO are significantly different as in the case of the oxidation of Pt electrode.  These differences are assigned to kinetic differences on the FTO surface that require significant over potentials to drive the oxidation of iodide and triiodide. We propose that at the highly positive potentials the iodine radical intermediate, I·, becomes thermodynamically stable at FTO. The radical nature of the intermediate was verified by the formation of radicals of the usual traps of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 2,2,5,5 tetramethyl-1-pyrroline N-oxide (TMPO) when these were added to an electrolyzed solution. Irradiation of an iodine solution causes the homolytic cleavage of I2 and yields the same radical intermediate with TMPO as in the electrolysis experiment. Similar results were obtained from the electrolysis of bromide solutions upon addition of TMPO. Short term electrolysis (< 1 h) gives triiodide as a final product while long-term electrolysis (> 17 h) yields additional byproducts. Byproducts were determined to be organoiodines by gas chromatography-mass spectrometry (GC-MS). Overall, our results are consistent with iodine atoms reacting with the electrolyte during electrolysis at the FTO electrode and with a sequential two-electron transfer process. 
    more » « less