skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Copper Corrosion Behavior in Simulated Concrete-Pore Solutions
The copper corrosion was studied for 30 days in two alkaline electrolytes: saturated Ca(OH)2 and cement extract, employed to simulate concrete-pore environments. Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry were carried out at the open circuit potential (OCP), and potentiodynamic polarization (PDP) curves were performed for comparative purposes. Electrochemical current fluctuations, considered as electrochemical noise (EN), were employed as non-destructive methods. The tests revealed that sat. Ca(OH)2 is the less aggressive to the Cu surface, mainly because of the lower in one order pH. In consequence, the OCP values of Cu were more positive, the polarization resistance values were higher by one order of magnitude, and the anodic currents of Cu were lower than those in the cement extract. The analyzed EN indicated that the initial corrosion attacks on the Cu surface are quasi-uniform, resulting from the stationary persistent corrosion process occurring in both model solutions. XPS analysis and X-ray diffraction (XRD) patterns revealed that in sat. Ca(OH)2, a Cu2O/CuO corrosion layer was formed, which effectively protects the metallic Cu-surface. We present evidence for the sequential oxidation of Cu to the (+1) and (+2) species, its impact on the corrosion layer, and also its protective properties.  more » « less
Award ID(s):
1726897
PAR ID:
10216943
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Metals
Volume:
10
Issue:
4
ISSN:
2075-4701
Page Range / eLocation ID:
474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical atomic force microscopy (EC-AFM) experiments, including simultaneous linear polarization resistance (LPR) tests and in situ AFM imaging, under a CO2 atmosphere, were performed to investigate the adsorption characteristics and inhibition effects of a tetradecyldimethylbenzylammonium corrosion inhibitor model compound. When the inhibitor bulk concentration was at 0.5 critical micelle concentration (CMC), in situ AFM results indicated nonuniform tilted monolayer formation on the mica surface and EC-AFM results indicated partial corrosion of the UNS G10180 steel surface. At 2 CMC, a uniform tilted bilayer or perpendicular monolayer was detected on mica, and corrosion with UNS G10180 steel was uniformly retarded. Consistently, simultaneous LPR tests showed that corrosion rates decreased as the inhibitor concentration increased until it reached the surface saturation value (1 and 2 CMC). Molecular simulations have been performed to study the formation of the inhibitor layer and its molecular-level structure. Simulation results showed that at the initiation of the adsorption process, islands of adsorbed inhibitor molecules appear on the surface. These islands grow and coalesce to become a complete self-assembled layer. 
    more » « less
  2. null (Ed.)
    In this study, a compact cold sprayed (CS) Ti coating was deposited on Mg alloy using a high pressure cold spray (HPCS) system. The wear and corrosion behavior of the CS Ti coating was compared with that of CS Al coating and bare Mg alloy. The Ti coating yielded lower wear rate compared to Al coating and Mg alloy. Electrochemical impedance spectroscopy (EIS) and cyclic potentiodynamic polarization (CPP) tests revealed that CS Ti coating can substantially reduce corrosion rate of AZ31B in chloride containing solutions compared to CS Al coating. Interestingly, Ti-coated Mg alloy demonstrated negative hysteresis loop, depicting repassivation of pits, in contrast to AZ31B and Al-coated AZ31B with positive hysteresis loops where corrosion potential (Ecorr) > repassivation potential (Erp); indicating irreversible growth of pits. AZ31B and Al-coated AZ31B were most susceptible to pitting corrosion, while Ti-coated Mg alloy indicated noticeable resistance to pitting in 3.5 wt % NaCl solution. In comparison to Al coating, Ti coating considerably separated the AZ31BMg alloy surface from the corrosive electrolyte during long term immersion test for 11 days. 
    more » « less
  3. null (Ed.)
    One-pot reaction of tris(2-aminoethyl)amine (TREN), [Cu I (MeCN) 4 ]PF 6 , and paraformaldehyde affords a mixed-valent [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu 3 (μ 3 -OH)] 3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 and its solvent-exposed analog [ TREN3 Cu II Cu II Cu II (μ 3 -O)](PF 6 ) 4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [ TREN4 Cu I Cu I Cu I (μ 3 -OH)](PF 6 ) 2 can reduce O 2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature's multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at Cu I Cu I Cu I ( 4a ), Cu II Cu I Cu I ( 4b ), and Cu II Cu II Cu I ( 4c ) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (10 5 to 10 6 M −1 s −1 ) were observed for both Cu I Cu I Cu I /Cu II Cu I Cu I and Cu II Cu I Cu I /Cu II Cu II Cu I redox couples, approaching the rapid electron transfer rates of copper sites in MCO. 
    more » « less
  4. The unprecedented liquid–liquid extraction of the dinegative chromate ion (CrO42–) from neutral aqueous solutions into aliphatic hydrocarbon solvents using nanojars as extraction agents is demonstrated. Transferring chromate from water into an organic solvent is extremely challenging due to its large hydration energy (ΔGh° = −950 kJ/mol) and strong oxidizing ability. Owing to their highly hydrophilic anion binding pockets lined by a multitude of hydrogen bond donor OH groups, neutral nanojars of the formula [cis-CuII(μ-OH)(μ-4-Rpz)]n (n = 27–33; pz = pyrazolate anion; R = H or n-octyl) strongly bind the CrO42– ion and efficiently transfer it from water into n-heptane or C11 – C13 isoalkanes (when R = n-octyl). The extracted chromate can easily be recovered from the organic layer by stripping with an aqueous acid solution. Electrospray ionization mass spectrometric, UV–vis and paramagnetic 1H NMR spectroscopic, X-ray crystallographic, and thermal stability studies in solution and chemical stability studies toward NH3, methanol, and Ba2+ ions are employed to explore the binding of the CrO42– ion by nanojars. Titration of carbonate nanojars [CO3 ⊂ {Cu(OH)(pz)}n]2– with H2CrO4 leads to anion exchange and the formation of chromate nanojars [CrO4 ⊂ {Cu(OH)(pz)}n]2–. Details of chromate binding by H-bonding based on single-crystal structures of (Bu4N)2[CrO4 ⊂ {Cu(OH)(pz)}28], four pseudopolymorphs of (Bu4N)2[CrO4 ⊂ {Cu(OH)(pz)}31], and also the methoxy-substituted derivative (Bu4N)2[CrO4 ⊂ {Cu31(OH)30(OCH3)(pz)31}] are presented. 
    more » « less
  5. Tang, Qiang (Ed.)
    As an environmentally friendly technology, microbially induced calcite precipitation (MICP) is widely used to improve the engineering properties of soil. The goal of this study was to investigate the effect of rainfall-induced erosion on the stability of sandy slopes which were treated by MICP technology. The observation of the erosion pattern of low concentration (0.25 M Ca) and high concentration (0.5 M Ca) of MICP-treated slopes, the mechanical behaviors of MICP-treated and cement-treated samples, and the effects of rainfall-induced erosion on the roughness of 0.5 M Ca MICP-treated and 10% cement-treated slope were studied through visual observation, unconfined compressive tests, and roughness tests. For the 0.25 M Ca MICP-treated sample, surface erosion was found to occur soon after the start of the rainfall erosion test, while for the 0.5 M Ca MICP-treated sample, the slope surface remained intact after exposing to the rainfall for 24 hours. Through unconfined compressive tests, it can be concluded that the 0.5 M Ca MICP treatment achieved a high strength, which was similar to 10% cement-treated sand. The roughness test results showed that the surface of 0.5 M Ca MICP-treated slope looked smoother than the uneroded surface after 24-h rainfall-induced erosion. On the contrary, the surface of the 10% cement-treated slope became rougher after 24-h rainfall-induced erosion. These results indicated that the MICP-treated sandy slope had lower resistance against rainfall-induced erosion compared to the cement-treated sandy slope. 
    more » « less