Langmuir–Blodgett (LB) film deposition gives an opportunity to control the packing density and orientation of anisotropic nanoparticles at a monolayer level, allowing accurate characterization of their anisotropic material properties. The uniaxial deposition of rod‐shaped cellulose nanocrystals (CNCs) over a macroscopically large area is achieved by aligning the long axis of CNCs on the LB trough with the direction of the maximum drag force within the meniscus during the vertical pulling of the substrate from the LB trough. On the uniaxially‐aligned LB films, anisotropic linear and non‐linear optical properties of CNCs are obtained using Mueller matrix spectroscopy and sum frequency generation spectroscopy, respectively, and explained with time‐dependent density functional theory calculations. Also, the frictional anisotropy of the LB film is measured using atomic force microscopy and explained theoretically. The findings of this study will be valuable for preparation of anisotropic nanoparticle thin films with uniform arrangements and utilization of their anisotropic material properties.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Although graphene is well known for super-lubricity on its basal plane, friction at its step edge is not well understood and contradictory friction behaviors have been reported. In this study, friction of mono-layer thick graphene step edges was studied using atomic force microscopy (AFM) with a Si tip in dry nitrogen atmosphere. It is found that, when the tip slides over a ‘buried’ graphene step edge, there is a resistive force during the step-up motion and an assistive force during the step-down motion due to the topographic height change. The magnitude of these two forces is small and the same in both step-up and step-down motions. As for the ‘exposed’ graphene step edge, friction increases in magnitude and exhibits more complicated behaviors. During the step-down motion of the tip over the exposed step edge, both resistive and assistive components can be detected in the lateral force signal of AFM if the scan resolution is sufficiently high. The resistive component is attributed to chemical interactions between the functional groups at the tip and step-edge surfaces, and the assistive component is due to the topographic effect, same as the case of buried step edge. If a blunt tip is used, the distinct effects of these two components become more prominent. In the step-up scan direction, the blunt tip appears to have two separate topographic effects elastic deformation of the contact region at the bottom of the tip due to the substrate height change at the step edge and tilting of the tip while the vertical position of the cantilever (the end of the tip) ascends from the lower terrace to the upper terrace. The high-resolution measurement of friction behaviors at graphene step edges will further enrich understanding of interfacial friction behaviors on graphene-covered surfaces.more » « less
-
This Letter reports that the atomic corrugation of the surface can affect nanoscale interfacial adhesion and friction differently. Both atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that the adhesion force needed to separate a silica tip from a graphene step edge increases as the side wall of the tip approaches the step edge when the tip is on the lower terrace and decreases as the tip ascends or descends the step edge. However, the friction force measured with the same AFM tip moving across the step edge does not positively correlate with the measured adhesion, which implies that the conventional contact mechanics approach of correlating interfacial adhesion and friction could be invalid for surfaces with atomic-scale features. The chemical and physical origins for the observed discrepancy between adhesion and friction at the atomic step edge are discussed.more » « less
-
Friction occurs through a complex set of processes that act together to resist relative motion. However, despite this complexity, friction is typically described using a simple phenomenological expression that relates normal and lateral forces via a coefficient, the friction coefficient. This one parameter encompasses multiple, sometimes competing, effects. To better understand the origins of friction, here, we study a chemically and topographically well-defined interface between silica and graphite with a single-layer graphene step edge. We identify the separate contributions of physical and chemical processes to friction and show that a single friction coefficient can be separated into two terms corresponding to these effects. The findings provide insight into the chemical and topographic origins of friction and suggest means of tuning surfaces by leveraging competing frictional processes.more » « less
-
Abstract Atomic force microscopy (AFM) is typically used for analysis of relatively flat surfaces with topographic features smaller than the height of the AFM tip. On flat surfaces, it is relatively easy to find the object of interest and deconvolute imaging artifacts resulting from the finite size of the AFM tip. In contrast, AFM imaging of three-dimensional objects much larger than the AFM tip height is rarely attempted although it could provide topographic information that is not readily available from two-dimensional imaging, such as scanning electron microscopy. In this paper, we report AFM measurements of a vertically-mounted razor blade, which is taller and sharper than the AFM tip. In this case, the AFM height data, except for the data collected around the cutting edge of the blade, reflect the shape of the AFM tip. The height data around the apex area are effectively the convolution of the AFM tip and the blade cutting edge. Based on computer simulations mimicking an AFM tip scanning across a round sample, a simple algorithm is proposed to deconvolute the AFM height data of an object taller and sharper than the AFM tip and estimate its effective curvature.more » « less
-
The friction and wear behavior of materials are not intrinsic properties, but extrinsic properties; in other words, they can drastically vary depending on test and environmental conditions. In ambient air, humidity is one such extrinsic parameter. This paper reviews the effects of humidity on macro- and nano-scale friction and wear of various types of materials. The materials included in this review are graphite and graphene, diamond-like carbon (DLC) films, ultrananocrystalline diamond (UNCD), transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), boric acid, silicon, silicon oxide, silicates, advanced ceramics, and metals. Details of underlying mechanisms governing friction and wear behaviors vary depending on materials and humidity; nonetheless, a comparison of various material cases revealed an overarching trend. Tribochemical reactions between the tribo-materials and the adsorbed water molecules play significant roles; such reactions can occur at defect sites in the case of two-dimensionally layered materials and carbon-based materials, or even on low energy surfaces in the case of metals and oxide materials. It is extremely important to consider the effects of adsorbed water layer thickness and structure for a full understanding of tribological properties of materials in ambient air.more » « less