skip to main content


Search for: All records

Award ID contains: 1728921

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    2D perovskites are recently attracting a significant amount of attention, mainly due to their improved stability compared with their 3D counterpart, e.g., the archetypical MAPbI3. Interestingly, the first studies on 2D perovskites can be dated back to the 1980s. The most popular 2D perovskites have a general formula of (RNH3)2MAn−1MnX3n+1, wherenrepresents the number of metal halide octahedrons between the insulating organic cation layers. The optoelectronic properties of 2D perovskites, e.g., band gap, are highly dependent on the thickness of the inorganic layers (i.e., the value ofn). Herein, 2D perovskites are arbitrarily divided into three classes, strict 2D (n= 1), quasi‐2D (n= 2–5), and quasi‐3D (n> 5), and research progress is summarized following this classification. The majority of existing 2D perovskites only employ very simple organic cations (e.g., butyl ammonium or phenylethyl ammonium), which merely function as the supporting layer/insulating barrier to achieve the 2D structure. Thus, a particularly important research question is: can functional organic cations be designed for these 2D perovskites, where these functional organic cations would play an important role in dictating the optoelectronic properties of these organic–inorganic hybrid materials, leading to unique device performance or applications?

     
    more » « less
  2. Hybrid perovskites incorporating conjugated organic cations enable unusual charge carrier interactions among organic and inorganic structural components, but are difficult to prepare as films due to disparate component chemical/physical characteristics ( e.g. , solubility, thermal stability). Here we demonstrate that resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) mitigates these challenges, enabling facile deposition of lead-halide-based perovskite films incorporating variable-length oligothiophene cations. Density functional theory (DFT) predicts suitable organic and inorganic moieties that form quantum-well-like structures with targeted luminescence or exciton separation/quenching. RIR-MAPLE-deposited films enable confirmation of these predictions by optical measurements, which further display excited state behavior transcending traditional quantum-well models— i.e. , with appropriate selection of specially synthesized organic/inorganic moieties, intercomponent carrier transfer efficiently converts excitons from singlet to triplet states in organics for which intersystem crossing cannot ordinarily compete with recombination. These observations demonstrate the uniquely versatile excited-state behavior in hybrid perovskite quantum wells, and the value of integrating DFT, organic synthesis, RIR-MAPLE and spectroscopy for screening/preparing rationally devised complex structures. 
    more » « less