skip to main content

Search for: All records

Award ID contains: 1729509

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bregman-type iterative methods have received considerable attention in recent years due to their ease of implementation and the high quality of the computed solutions they deliver. However, these iterative methods may require a large number of iterations and this reduces their usefulness. This paper develops a computationally attractive linearized Bregman algorithm by projecting the problem to be solved into an appropriately chosen low-dimensional Krylov subspace. The projection reduces the computational effort required for each iteration. A variant of this solution method, in which nonnegativity of each computed iterate is imposed, also is described. Extensive numerical examples illustrate the performancemore »of the proposed methods.« less
  2. Active matter composed of self-propelled interacting units holds a major promise for the extraction of useful work from its seemingly chaotic dynamics. Streamlining active matter is especially important at the microscale, where the viscous forces prevail over inertia and transport requires a non-reciprocal motion. Here we report that microscopic active droplets representing aqueous dispersions of swimming bacteria Bacillus subtilis become unidirectionally motile when placed in an inactive nematic liquid-crystal medium. Random motion of bacteria inside the droplet is rectified into a directional self-locomotion of the droplet by the polar director structure that the droplet creates in the surrounding nematic throughmore »anisotropic molecular interactions at its surface. Droplets without active swimmers show no net displacement. The trajectory of the active droplet can be predesigned by patterning the molecular orientation of the nematic. The effect demonstrates that broken spatial symmetry of the medium can be the reason for and the means to control directional microscale transport.« less