Plug-and-Play (PnP) methods are efficient iterative algorithms for solving ill-posed image inverse problems. PnP methods are obtained by using deep Gaussian denoisers instead of the proximal operator or the gradient-descent step within proximal algorithms. Current PnP schemes rely on data-fidelity terms that have either Lipschitz gradients or closed-form proximal operators, which is not applicable to Poisson inverse problems. Based on the observation that the Gaussian noise is not the adequate noise model in this setting, we propose to generalize PnP using the Bregman Proximal Gradient (BPG) method. BPG replaces the Euclidean distance with a Bregman divergence that can better capture the smoothness properties of the problem. We introduce the Bregman Score Denoiser specifically parametrized and trained for the new Bregman geometry and prove that it corresponds to the proximal operator of a nonconvex potential. We propose two PnP algorithms based on the Bregman Score Denoiser for solving Poisson inverse problems. Extending the convergence results of BPG in the nonconvex settings, we show that the proposed methods converge, targeting stationary points of an explicit global functional. Experimental evaluations conducted on various Poisson inverse problems validate the convergence results and showcase effective restoration performance.
more »
« less
Linearized Krylov subspace Bregman iteration with nonnegativity constraint
Abstract Bregman-type iterative methods have received considerable attention in recent years due to their ease of implementation and the high quality of the computed solutions they deliver. However, these iterative methods may require a large number of iterations and this reduces their usefulness. This paper develops a computationally attractive linearized Bregman algorithm by projecting the problem to be solved into an appropriately chosen low-dimensional Krylov subspace. The projection reduces the computational effort required for each iteration. A variant of this solution method, in which nonnegativity of each computed iterate is imposed, also is described. Extensive numerical examples illustrate the performance of the proposed methods.
more »
« less
- PAR ID:
- 10191507
- Date Published:
- Journal Name:
- Numerical Algorithms
- ISSN:
- 1017-1398
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
l1 regularization is used to preserve edges or enforce sparsity in a solution to an inverse problem. We investigate the split Bregman and the majorization-minimization iterative methods that turn this nonsmooth minimization problem into a sequence of steps that include solving an -regularized minimization problem. We consider selecting the regularization parameter in the inner generalized Tikhonov regularization problems that occur at each iteration in these iterative methods. The generalized cross validation method and chi2 degrees of freedom test are extended to these inner problems. In particular, for the chi2 test this includes extending the result for problems in which the regularization operator has more rows than columns and showing how to use the -weighted generalized inverse to estimate prior information at each inner iteration. Numerical experiments for image deblurring problems demonstrate that it is more effective to select the regularization parameter automatically within the iterative schemes than to keep it fixed for all iterations. Moreover, an appropriate regularization parameter can be estimated in the early iterations and fixed to convergence.more » « less
-
null (Ed.)Canonical polyadic decomposition (CPD) has been a workhorse for multimodal data analytics. This work puts forth a stochastic algorithmic framework for CPD under β-divergence, which is well-motivated in statistical learning—where the Euclidean distance is typically not preferred. Despite the existence of a series of prior works addressing this topic, pressing computational and theoretical challenges, e.g., scalability and convergence issues, still remain. In this paper, a unified stochastic mirror descent framework is developed for large-scale β-divergence CPD. Our key contribution is the integrated design of a tensor fiber sampling strategy and a flexible stochastic Bregman divergence-based mirror descent iterative procedure, which significantly reduces the computation and memory cost per iteration for various β. Leveraging the fiber sampling scheme and the multilinear algebraic structure of low-rank tensors, the proposed lightweight algorithm also ensures global convergence to a stationary point under mild conditions. Numerical results on synthetic and real data show that our framework attains significant computational saving compared with state-of-the-art methods.more » « less
-
Abstract Discrete ill‐posed inverse problems arise in many areas of science and engineering. Their solutions are very sensitive to perturbations in the data. Regularization methods aim at reducing this sensitivity. This article considers an iterative regularization method, based on iterated Tikhonov regularization, that was proposed in M. Donatelli and M. Hanke, Fast nonstationary preconditioned iterative methods for ill‐posed problems, with application to image deblurring,Inverse Problems, 29 (2013), Art. 095008, 16 pages. In this method, the exact operator is approximated by an operator that is easier to work with. However, the convergence theory requires the approximating operator to be spectrally equivalent to the original operator. This condition is rarely satisfied in practice. Nevertheless, this iterative method determines accurate image restorations in many situations. We propose a modification of the iterative method, that relaxes the demand of spectral equivalence to a requirement that is easier to satisfy. We show that, although the modified method is not an iterative regularization method, it maintains one of the most important theoretical properties for this kind of methods, namely monotonic decrease of the reconstruction error. Several computed experiments show the good performances of the proposed method.more » « less
-
ABSTRACT Several iterative soft‐thresholding algorithms, such as FISTA, have been proposed in the literature for solving regularized linear discrete inverse problems that arise in various applications in science and engineering. These algorithms are easy to implement, but their rates of convergence may be slow. This paper describes novel approaches to reduce the computations required for each iteration by using Krylov subspace techniques. Specifically, we propose to impose sparsity on the coefficients in the representation of the computed solution in terms of a Krylov subspace basis. Several numerical examples from image deblurring and computerized tomography are used to illustrate the efficiency and accuracy of the proposed methods.more » « less
An official website of the United States government

