skip to main content


Search for: All records

Award ID contains: 1729787

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atomically thin, few‐layered membranes of oxides show unique physical and chemical properties compared to their bulk forms. Manganese oxide (Mn3O4) membranes are exfoliated from the naturally occurring mineral Hausmannite and used to make flexible, high‐performance nanogenerators (NGs). An enhanced power density in the membrane NG is observed with the best‐performing device showing a power density of 7.99 mW m−2compared to 1.04 µW m−2in bulk Mn3O4. A sensitivity of 108 mV kPa−1for applied forces <10 N in the membrane NG is observed. The improved performance of these NGs is attributed to enhanced flexoelectric response in a few layers of Mn3O4. Using first‐principles calculations, the flexoelectric coefficients of monolayer and bilayer Mn3O4are found to be 50–100 times larger than other 2D transition metal dichalcogenides (TMDCs). Using a model based on classical beam theory, an increasing activation of the bending mode with decreasing thickness of the oxide membranes is observed, which in turn leads to a large flexoelectric response. As a proof‐of‐concept, flexible NGs using exfoliated Mn3O4membranes are made and used in self‐powered paper‐based devices. This research paves the way for the exploration of few‐layered membranes of other centrosymmetric oxides for application as energy harvesters.

     
    more » « less
  2. Abstract

    Clusters of nitrogen‐ and carbon‐coordinated transition metals dispersed in a carbon matrix (e. g., Fe−N−C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen‐coordinated transition metal clusters embedded in a more stable and corrosion‐resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe−N−C catalysts. Utilizing first‐principles calculations, an electrostatics‐based descriptor of catalytic activity was identified, and nitrogen‐coordinated iron (FeN4) clusters embedded in a TiC matrix were predicted to be an efficient platinum‐group metal (PGM)‐free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor‐derived theoretical predictions. The Fe−N−TiC catalyst exhibited enhanced activity (20 %) and durability (3.5‐fold improvement) compared to a traditional Fe−N−C catalyst. It was posited that the electrostatics‐based descriptor provides a powerful platform for the design of active and stable PGM‐free electrocatalysts and heterogenous single‐atom catalysts for other electrochemical reactions.

     
    more » « less
  3. Abstract

    High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2conversion to CO, revealing an excellent current density of 0.51 A cm−2and a turnover frequency of 58.3 s−1at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems.

     
    more » « less
  4. Abstract

    Bandgap engineering plays a critical role in optimizing the electrical, optical and (photo)‐electrochemical applications of semiconductors. Alloying has been a historically successful way of tuning bandgaps by making solid solutions of two isovalent semiconductors. In this work, a novel form of bandgap engineering involving alloying non‐isovalent cations in a 2D transition metal dichalcogenide (TMDC) is presented. By alloying semiconducting MoSe2with metallic NbSe2, two structural phases of Mo0.5Nb0.5Se2, the1Tand2Hphases, are produced each with emergent electronic structure. At room temperature, it is observed that the1Tand2Hphases are semiconducting and metallic, respectively. For the1Tstructure, scanning tunneling microscopy/spectroscopy (STM/STS) is used to measure band gaps in the range of 0.42–0.58 at 77 K. Electron diffraction patterns of the1Tstructure obtained at room temperature show the presence of a nearly commensurate charge density wave (NCCDW) phase with periodic lattice distortions that result in an uncommon 4 × 4 supercell, rotated approximately 4° from the lattice. Density‐functional‐theory calculations confirm that local distortions, such as those in a NCCDW, can open up a band gap in1T‐Mo0.5Nb0.5Se2, but not in the2Hphase. This work expands the boundaries of alloy‐based bandgap engineering by introducing a novel technique that facilitates CDW phases through alloying.

     
    more » « less
  5. Abstract

    2D materials, such as transition metal dichalcogenides (TMDs), graphene, and boron nitride, are seen as promising materials for future high power/high frequency electronics. However, the large difference in the thermal expansion coefficient (TEC) between many of these 2D materials could impose a serious challenge for the design of monolayer‐material‐based nanodevices. To address this challenge, alloy engineering of TMDs is used to tailor their TECs. Here, in situ heating experiments in a scanning transmission electron microscope are combined with electron energy‐loss spectroscopy and first‐principles modeling of monolayer Mo1−xWxS2with different alloying concentrations to determine the TEC. Significant changes in the TEC are seen as a function of chemical composition in Mo1−xWxS2, with the smallest TEC being reported for a configuration with the highest entropy. This study provides key insights into understanding the nanoscale phenomena that control TEC values of 2D materials.

     
    more » « less
  6. Abstract

    Transition metal dichalcogenide (TMDCs) alloys could have a wide range of physical and chemical properties, ranging from charge density waves to superconductivity and electrochemical activities. While many exciting behaviors of unary TMDCs have been demonstrated, the vast compositional space of TMDC alloys has remained largely unexplored due to the lack of understanding regarding their stability when accommodating different cations or chalcogens in a single‐phase. Here, a theory‐guided synthesis approach is reported to achieve unexplored quasi‐binary TMDC alloys through computationally predicted stability maps. Equilibrium temperature–composition phase diagrams using first‐principles calculations are generated to identify the stability of 25 quasi‐binary TMDC alloys, including some involving non‐isovalent cations and are verified experimentally through the synthesis of a subset of 12 predicted alloys using a scalable chemical vapor transport method. It is demonstrated that the synthesized alloys can be exfoliated into 2D structures, and some of them exhibit: i) outstanding thermal stability tested up to 1230 K, ii) exceptionally high electrochemical activity for the CO2reduction reaction in a kinetically limited regime with near zero overpotential for CO formation, iii) excellent energy efficiency in a high rate Li–air battery, and iv) high break‐down current density for interconnect applications. This framework can be extended to accelerate the discovery of other TMDC alloys for various applications.

     
    more » « less
  7. Abstract

    Internal magnetic moments induced by magnetic dopants in MoS2monolayers are shown to serve as a new means to engineer valley Zeeman splitting (VZS). Specifically, successful synthesis of monolayer MoS2doped with the magnetic element Co is reported, and the magnitude of the valley splitting is engineered by manipulating the dopant concentration. Valley splittings of 3.9, 5.2, and 6.15 meV at 7 T in Co‐doped MoS2with Co concentrations of 0.8%, 1.7%, and 2.5%, respectively, are achieved as revealed by polarization‐resolved photoluminescence (PL) spectroscopy. Atomic‐resolution electron microscopy studies clearly identify the magnetic sites of Co substitution in the MoS2lattice, forming two distinct types of configurations, namely isolated single dopants and tridopant clusters. Density functional theory (DFT) and model calculations reveal that the observed enhanced VZS arises from an internal magnetic field induced by the tridopant clusters, which couples to the spin, atomic orbital, and valley magnetic moment of carriers from the conduction and valence bands. The present study demonstrates a new method to control the valley pseudospin via magnetic dopants in layered semiconducting materials, paving the way toward magneto‐optical and spintronic devices.

     
    more » « less
  8. Abstract

    The optimization of traditional electrocatalysts has reached a point where progress is impeded by fundamental physical factors including inherent scaling relations among thermokinetic characteristics of different elementary reaction steps, non‐Nernstian behavior, and electronic structure of the catalyst. This indicates that the currently utilized classes of electrocatalysts may not be adequate for future needs. This study reports on synthesis and characterization of a new class of materials based on 2D transition metal dichalcogenides including sulfides, selenides, and tellurides of group V and VI transition metals that exhibit excellent catalytic performance for both oxygen reduction and evolution reactions in an aprotic medium with Li salts. The reaction rates are much higher for these materials than previously reported catalysts for these reactions. The reasons for the high activity are found to be the metal edges with adiabatic electron transfer capability and a cocatalyst effect involving an ionic‐liquid electrolyte. These new materials are expected to have high activity for other core electrocatalytic reactions and open the way for advances in energy storage and catalysis.

     
    more » « less
  9. Oxy-combustion systems result in enriched CO 2 in exhaust gases; however, the utilization of the concentrated CO 2 stream from oxy-combustion is limited by remnant O 2 . CH 4 oxidation using Pd catalysts has been found to have high O 2 -removal efficiency. Here, the effect of excess CO 2 in the feed stream on O 2 removal with CH 4 oxidation is investigated by combining experimental and theoretical approaches. Experimental results reveal complete CH 4 oxidation without any side-products, and a monotonic increase in the rate of CO 2 generation with an increase in CO 2 concentration in the feed stream. Density-functional theory calculations show that high surface coverage of CO 2 on Pd leads to a reduction in the activation energy for the initial dissociation of CH 4 into CH 3 and H, and also the subsequent oxidation reactions. A CO 2 -rich environment in oxy-combustion systems is therefore beneficial for the reduction of oxygen in exhaust gases. 
    more » « less