Abstract Non‐volatile resistive switching (NVRS) is a widely available effect in transitional metal oxides, colloquially known as memristors, and of broad interest for memory technology and neuromorphic computing. Until recently, NVRS was not known in other transitional metal dichalcogenides (TMDs), an important material class owing to their atomic thinness enabling the ultimate dimensional scaling. Here, various monolayer or few‐layer 2D materials are presented in the conventional vertical structure that exhibit NVRS, including TMDs (MX2, M=transitional metal, e.g., Mo, W, Re, Sn, or Pt; X=chalcogen, e.g., S, Se, or Te), TMD heterostructure (WS2/MoS2), and an atomically thin insulator (h‐BN). These results indicate the universality of the phenomenon in 2D non‐conductive materials, and feature low switching voltage, large ON/OFF ratio, and forming‐free characteristic. A dissociation–diffusion–adsorption model is proposed, attributing the enhanced conductance to metal atoms/ions adsorption into intrinsic vacancies, a conductive‐point mechanism supported by first‐principle calculations and scanning tunneling microscopy characterizations. The results motivate further research in the understanding and applications of defects in 2D materials.
more »
« less
Controlling Nanoscale Thermal Expansion of Monolayer Transition Metal Dichalcogenides by Alloy Engineering
Abstract 2D materials, such as transition metal dichalcogenides (TMDs), graphene, and boron nitride, are seen as promising materials for future high power/high frequency electronics. However, the large difference in the thermal expansion coefficient (TEC) between many of these 2D materials could impose a serious challenge for the design of monolayer‐material‐based nanodevices. To address this challenge, alloy engineering of TMDs is used to tailor their TECs. Here, in situ heating experiments in a scanning transmission electron microscope are combined with electron energy‐loss spectroscopy and first‐principles modeling of monolayer Mo1−xWxS2with different alloying concentrations to determine the TEC. Significant changes in the TEC are seen as a function of chemical composition in Mo1−xWxS2, with the smallest TEC being reported for a configuration with the highest entropy. This study provides key insights into understanding the nanoscale phenomena that control TEC values of 2D materials.
more »
« less
- PAR ID:
- 10127336
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Engineering electronic bandgaps is crucial for applications in information technology, sensing, and renewable energy. Transition metal dichalcogenides (TMDCs) offer a versatile platform for bandgap modulation through alloying, doping, and heterostructure formation. Here, the synthesis of a 2D MoxW1‐xS2graded alloy is reported, featuring a Mo‐rich center that transitions to W‐rich edges, achieving a tunable bandgap of 1.85 to 1.95 eV when moving from the center to the edge of the flake. Aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy showed the presence of sulfur monovacancy, VS, whose concentration varied across the graded MoxW1‐xS2layer as a function of Mo content with the highest value in the Mo‐rich center region. Optical spectroscopy measurements supported by ab initio calculations reveal a doublet electronic state of VS, which is split due to the spin‐orbit interaction, with energy levels close to the conduction band or deep in the bandgap depending on whether the vacancy is surrounded by W atoms or Mo atoms. This unique electronic configuration of VSin the alloy gave rise to four spin‐allowed optical transitions between the VSlevels and the valence bands. The study demonstrates the potential of defect and optical engineering in 2D monolayers for advanced device applications.more » « less
-
Abstract Transition metal dichalcogenides (TMDs), especially in two-dimensional (2D) form, exhibit many properties desirable for device applications. However, device performance can be hindered by the presence of defects. Here, we combine state of the art experimental and computational approaches to determine formation energies and charge transition levels of defects in bulk and 2D MX2(M = Mo or W; X = S, Se, or Te). We perform deep level transient spectroscopy (DLTS) measurements of bulk TMDs. Simultaneously, we calculate formation energies and defect levels of all native point defects, which enable identification of levels observed in DLTS and extend our calculations to vacancies in 2D TMDs, for which DLTS is challenging. We find that reduction of dimensionality of TMDs to 2D has a significant impact on defect properties. This finding may explain differences in optical properties of 2D TMDs synthesized with different methods and lays foundation for future developments of more efficient TMD-based devices.more » « less
-
Abstract 2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two‐faced structure, broken‐mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high‐quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain‐boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high‐resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (VS andVSe) and double chalcogen vacancy (VS−VSe), interstitial defects (Mi), and metal impurities (MW) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h‐BN‐encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.more » « less
-
Abstract Source/Drain extension doping is crucial for minimizing the series resistance of the ungated channel and reducing the contact resistance of field‐effect transistors (FETs) in complementary metal–oxide–semiconductor (CMOS) technology. 2D semiconductors, such as MoS2and WSe2, are promising channel materials for beyond‐silicon CMOS. A key challenge is to achieve extension doping for 2D monolayer FETs without damaging the atomically thin material. This work demonstrates extension doping with low‐resistance contacts for monolayer WSe2p‐FETs. Self‐limiting oxidation transforms a bilayer WSe2into a hetero‐bilayer of a high‐work‐function WOxSeyon a monolayer WSe2. Then, damage‐free nanolithography defines an undoped nano‐channel, preserving the high on‐current of WOxSey‐doped FETs while significantly improving their on/off ratio. The insertion of an amorphous WOxSeyinterlayer under the contacts achieves record‐low contact resistances for monolayer WSe2over a hole density range of 1012to 1013cm−2(1.2 ± 0.3 kΩ µm at 1013cm−2). The WOxSey‐doped extension exhibits a sheet resistance as low as 10 ± 1 kΩ □−1. Monolayer WSe2p‐FETs with sub‐50 nm channel lengths reach a maximum drain current of 154 µA µm−1with an on/off ratio of 107–108. These results define strategies for nanometer‐scale selective‐area doping in 2D FETs and other 2D architectures.more » « less
An official website of the United States government
