skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carboniferous isotope stratigraphy
Abstract We present an updated set of Carboniferous Sr, C and O isotope stratigraphies based on the existing literature, given the importance of chemostratigraphy for stratigraphic correlation in the Carboniferous. The Carboniferous87Sr/86Sr record, constructed using brachiopods and conodonts, exhibits five first-order phases beginning with a rapid decline from a peak value ofc.0.70840 at the Devonian–Carboniferous boundary to a trough (0.70776–0.70771) in the Visean followed by a rise to a plateau (c.0.70827) in the upper Bashkirian. A decline toc.0.70804 follows from the lowermost Gzhelian to the close of the Carboniferous. Contemporaneous carbonate δ13C records exhibit considerable variability between materials analysed and by region, although pronounced excursions (e.g. the mid-Tournaisian positive excursion and the end-Kasimovian negative excursion) are present in most records. Bulk carbonate δ13C records from South China and Europe, however, are generally consistent with those of brachiopod calcite from North America in terms of both absolute values and trends. Both brachiopod calcite and conodont phosphate δ18O document large regional variability, confirming that Carboniferous δ18O records are invalid for precise stratigraphic correlation. Nevertheless, significant positive δ18O shifts in certain intervals (e.g. mid-Tournaisian and the Mississippian–Pennsylvanian transition) can be used for global correlation.  more » « less
Award ID(s):
1729882
PAR ID:
10506571
Author(s) / Creator(s):
; ;
Publisher / Repository:
Geological Society of London
Date Published:
Journal Name:
Geological Society, London, Special Publications
Volume:
512
Issue:
1
ISSN:
0305-8719
Page Range / eLocation ID:
197 to 211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the southwestern United States, California (CA) is one of the most climatically sensitive regions given its low (≤250 mm/year) seasonal precipitation and its inherently variable hydroclimate, subject to large magnitude modulation. To reconstruct past climate change in CA, cave calcite deposits (stalagmites) have been utilized as an archive for environmentally sensitive proxies, such as stable isotope compositions (δ18O, δ13C) and trace element concentrations (e.g., Mg, Ba, Sr). Monitoring the cave and associated surface environments, the chemical evolution of cave drip-water, the calcite precipitated from the drip-water, and the response of these systems to seasonal variability in precipitation and temperature is imperative for interpreting stalagmite proxies. Here we present monitored drip-water and physical parameters at Lilburn Cave, Sequoia Kings Canyon National Park (Southern Sierra Nevada), CA, and measured trace element concentrations (Mg, Sr, Ba, Cu, Fe, Mn) and stable isotopic compositions (δ18O, δ2H) of drip-water and for calcite (δ18O) precipitated on glass substrates over a two-year period (November 2018 to February 2021) to better understand how chemical variability at this site is influenced by local and regional precipitation and temperature variability. Despite large variability in surface temperatures and precipitation amount and source region (North Pacific vs. subtropical Pacific), Lilburn Cave exhibits a constant cave environment year-round. At two of the three sites within the cave, drip-water δ18O and δ2H are influenced seasonally by evaporative enrichment. At a third collection site in the cave, the drip-water δ18O responds solely to precipitation δ18O variability. The Mg/Ca, Ba/Ca, and Sr/Ca ratios are seasonally responsive to prior calcite precipitation at all sites but minimally to water-rock interaction. Lastly, we examine the potential of trace metals (e.g., Mn2+and Cu2+as a geochemical proxy of recharge and find that variability in their concentrations has high potential to denote the onset of the rainy season in the study region. The drip-water composition is recorded in the calcite, demonstrating that stalagmites from Lilburn Cave, and potentially more regionally, could record seasonal variability in weather even during periods of substantially reduced rainfall. 
    more » « less
  2. Abstract Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation. 
    more » « less
  3. Abstract The geochemistry of tropical coral skeletons is widely used in paleoclimate reconstructions. However, sub‐aerially exposed corals may be affected by diagenesis, altering the aragonite skeleton through partial dissolution, or infilling of secondary minerals like calcite. We analyzed the impact of intra‐skeletal calcite on the geochemistry (δ18O, Sr/Ca, Mg/Ca, Li/Mg, Li/Ca, U/Ca, B/Ca, Ba/Ca, and Mn/Ca) of a sub‐aerially exposedPoritessp. coral. Each micro‐milled coral sample was split into two aliquots for geochemistry and X‐ray diffraction (XRD) analysis to quantify the direct impact of calcite on geochemistry. We modified the sample loading technique for XRD to detect low calcite levels (1%–2%; total uncertainty = 0.33%, 2σ) in small samples (∼7.5 mg). Calcite content ranged from 0% to 12.5%, with higher percentages coinciding with larger geochemical offsets. Sr/Ca, Li/Mg, Li/Ca, and δ18O‐derived sea‐surface temperature (SST) anomalies per 1% calcite were +0.43°C, +0.24°C, +0.11°C, and +0.008°C, respectively. A 3.6% calcite produces a Sr/Ca‐SST signal commensurate with local SST seasonality (∼1.5°C), which we propose as the cut‐off level for screening calcite diagenesis in paleo‐temperature reconstructions. Inclusion of intra‐skeletal calcite decreases B/Ca, Ba/Ca, and U/Ca values, and increases Mg/Ca values, and can therefore impact reconstructions of paleoclimate and the carbonate chemistry of the semi‐isolated calcifying fluid in corals. This study emphasizes the importance of quantifying fine‐scale calcite diagenesis to identify coral preservation levels and assure robust paleoclimate reconstructions. 
    more » « less
  4. Abstract Predictions for the southwestern US with warming often suggest increased aridity. We investigate the sedimentary record of the Miocene Climate Optimum and Transition (MCO and MCT; ∼17–14 Ma) in northern New Mexico to understand the impact of warmer global temperatures and higherpCO2on southwestern US hydroclimate. The MCO and MCT comprised a globally warmer period with elevatedpCO2similar to end‐of‐the‐century (∼400–800 ppm) projections. We present new stable isotope (δ18O and δ13C) records of vadose‐zone and groundwater terrestrial carbonates and of modern precipitation, stream, and groundwater from the Española basin in northern New Mexico and establish a high‐resolution age model using new40Ar/39Ar ages. We interpret δ18O as reflecting the balance between summertime monsoonal and wintertime precipitation and δ13C as a reflection of plant productivity. Terrestrial carbonate δ18O is lowest during the MCO and MCT and is correlated with terrestrial carbonate δ13C and anti‐correlated with the benthic δ18O record. We interpret these data as recording an overall winter‐wet climate during the MCO and MCT, but that precipitation seasonality varied in response to changes in global climate during this period. The further correlation with carbonate δ13C suggests that plant productivity was driven by the amount of wintertime precipitation. Comparison with middle Miocene climate model simulations reveals that higher CO2drives a shift toward wintertime precipitation. Though paleogeographic changes may obscure a direct comparison to modern warming, overall, our findings suggest that prolonged global warmth may be associated with increased wintertime precipitation and greater primary productivity in northern New Mexico. 
    more » « less
  5. Abstract A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state. 
    more » « less