skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1733818

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An idealized aquaplanet moist global atmospheric model with realistic radiative transfer but no clouds and no convective parameterization is found to possess multiple climate equilibria. When forced symmetrically about the equator, in some cases the Inter Tropical Convergence Zone (ITCZ) migrates to an off‐equatorial equilibrium position. Mechanism denial experiments prescribing relative humidity imply that radiation‐circulation coupling is essential to this instability. The cross‐equatorial asymmetry occurs only when the underlying slab ocean is sufficiently deep and the atmosphere's spectral dynamical core is sufficiently coarse (∼T170 or less with our control parameters). At higher resolutions, initializing with an asymmetric state indicates metastability with very slow (thousands of days) return to hemispheric symmetry. There is some sensitivity to the model timestep, which affects the time required to transition to the asymmetric state, with little effect on the equilibrium climate. The instability is enhanced when the planetary boundary layer scheme favors deeper layers or by a prescribed meridional heat transport away from the equator within the slab. The instability is not present when the model is run with a convective parameterization scheme commonly utilized in idealized moist models. We argue that the instability occurs when the asymmetric heating associated with a spontaneous ITCZ shift drives a circulation that rises poleward of the perturbed ITCZ. These results serve as a warning of the potential for instability and non‐uniqueness of climate that may complicate studies with idealized models of the tropical response to perturbations in forcing. 
    more » « less
  2. Abstract This work investigates the characteristics of westward-propagating Rossby modes in idealized global general circulation models. Using a nonlinear smoothing algorithm to estimate the background spectrum and an objective method to extract the spectral peaks, the four leading meridional modes can be identified for each of the first three zonal wavenumbers, with frequencies close to the predictions from the Hough modes obtained by linearizing about a state of rest. Variations in peak amplitude for different modes, both within a simulation and across simulations, may be understood under the assumption that the forcing of the modes scales with the background spectrum. Surface friction affects the amplitude and width of the peaks but both remain finite as friction goes to zero, which implies that some other mechanism, arguably nonlinear, must also contribute to the damping of the modes. Although spectral peaks are also observed for the precipitation field with idealized moist physics, there is no evidence of mode enhancement by the convective heating. Subject to the same friction, the amplitude of the peaks are very similar in the dry and moist models when both are normalized by the background spectra. 
    more » « less
  3. Abstract The linearity of global‐mean outgoing longwave radiation (OLR) with surface temperature is a basic assumption in climate dynamics. This linearity manifests in global climate models, which robustly produce a global‐mean longwave clear‐sky (LWCS) feedback of 1.9 W/m2/K, consistent with idealized single‐column models (Koll & Cronin, 2018,https//:doi.org/10.1073/pnas.1809868115). However, there is considerable spatial variability in the LWCS feedback, including negative values over tropical oceans (known as the “super‐greenhouse effect”) which are compensated for by larger values in the subtropics/extratropics. Therefore, it is unclear how the idealized single‐column results are relevant for the global‐mean LWCS feedback in comprehensive climate models. Here we show with a simple analytical theory and model output that the compensation of this spatial variability to produce a robust global‐mean feedback can be explained by two facts: (1) When conditioned upon free‐tropospheric column relative humidity (RH), the LWCS feedback is independent of RH, and (2) the global histogram of free‐tropospheric column RH is largely invariant under warming. 
    more » « less
  4. null (Ed.)
    Abstract This study investigates the parameter dependence of eddy heat flux in a homogeneous quasigeostrophic two-layer model on a β plane with imposed environmental vertical wind shear and quadratic frictional drag. We examine the extent to which the results can be explained by a recently proposed diffusivity theory for passive tracers in two-dimensional turbulence. To account for the differences between two-layer and two-dimensional models, we modify the two-dimensional theory according to our two-layer f -plane analyses reported in an earlier study. Specifically, we replace the classic Kolmogorovian spectral slope, −5/3, assumed to predict eddy kinetic energy spectrum in the former with a larger slope, −7/3, suggested by a heuristic argument and fit to the model results in the latter. It is found that the modified theory provides a reasonable estimate within the regime where both and the strength of the frictional drag, , are much smaller than unity (here, c D is the nondimensional drag coefficient divided by the depth of the layer, k d is the wavenumber of deformation radius, and U is the imposed background vertical wind shear). For values of and that are closer to one, the theory works only if the full spectrum shape of the eddy kinetic energy is given. Despite the qualitative, fitting nature of this approach and its failure to explain the full parameter range, we believe its documentation here remains useful as a reference for the future attempt in pursuing a better theory. 
    more » « less
  5. null (Ed.)
    Abstract The cooling-to-space (CTS) approximation says that the radiative cooling of an atmospheric layer is dominated by that layer’s emission to space, while radiative exchange with layers above and below largely cancel. Though the CTS approximation has been demonstrated empirically and is thus fairly well accepted, a theoretical justification is lacking. Furthermore, the intuition behind the CTS approximation cannot be universally valid, as the CTS approximation fails in the case of pure radiative equilibrium. Motivated by this, we investigate the CTS approximation in detail. We frame the CTS approximation in terms of a novel decomposition of radiative flux divergence, which better captures the cancellation of exchange terms. We also derive validity criteria for the CTS approximation, using simple analytical theory. We apply these criteria in the context of both gray gas pure radiative equilibrium (PRE) and radiative–convective equilibrium (RCE) to understand how the CTS approximation arises and why it fails in PRE. When applied to realistic gases in RCE, these criteria predict that the CTS approximation should hold well for H2O but less so for CO2, a conclusion we verify with line-by-line radiative transfer calculations. Along the way we also discuss the well-known “τ = 1 law,” and its dependence on the choice of vertical coordinate. 
    more » « less
  6. In idealized models of the extratropical troposphere, both β and surface friction can control the equilibrated scales of baroclinic eddies by stopping the inverse cascade. A scaling theory on how surface friction alone sets these scales was proposed by Held in 1999 in the case of a quadratic drag law. However, the theory breaks down when friction is modeled by linear damping, and there are other reasons to suspect that it is oversimplified. An ideal system to test the theory is the homogeneous two-layer quasigeostrophic model in the β = 0 limit with quadratic damping. This study investigates some numerical simulations of the model to analyze two causes of the theory’s breakdown. They are 1) the asymmetry between two layers due to confinement of friction to the lower layer and 2) deviation from a spectrally local inverse energy cascade due to the spread of wavenumbers over which energy is input into the barotropic mode. The former is studied by comparing the simulations with drag appearing asymmetrically or symmetrically between the two layers. The latter is addressed with a heuristic modification of the theory. A regime where eddies equilibrate without an inverse cascade is also examined. A comparison is then made between quadratic and linear drag simulations. The connection to a competing theory based on the dynamics of equivalent barotropic vortices with thermal signatures is further discussed. Finally, we present an example of an inhomogeneous statistically steady state to argue that the diffusivity obtained from the homogeneous model has relevance to more realistic configurations. 
    more » « less