Abstract The westward-propagating convectively coupled equatorial wave (CCEW) variability produced by an idealized general circulation model (GCM) is investigated. The model is a zonally symmetric aquaplanet with a slab ocean. Water vapor in the model may condense and produce latent heating, but there is no parameterization of cloud processes, only a quasi-equilibrium convection scheme. The CCEWs produced by the model are found to be sensitive to the heat capacity of the slab and the strength of surface friction. In spectral space, the westward-propagating precipitation variability in the model is dominated by sharp peaks in spectral power at zonal wavenumbers 5 and 6. These precipitation peaks are situated along the dispersion curve of the Rossby–Haurwitz waves, suggesting a connection between the global Rossby modes and precipitation variability. Composites of these disturbances reveal global circulation patterns that extend into the midlatitudes. The moisture variance budget of these disturbances shows that moisture advection by the global Rossby modes maintains the accompanying moisture signal. This is interpreted as downgradient advection of the background moisture gradient of the intertropical convergence zone. The locations of the precipitation peaks are sensitive to Doppler shifting by the zonal winds; when this Doppler shift becomes too weak, the frequencies of the global Rossby modes become too high to effectively couple to convection. A linearized primitive equation model shows that the presence of vertical shear in the background zonal winds is vital for producing a forced response that resembles the modes produced by the GCM. The forced response of the linear model is optimally located to enhance the original circulation of the global mode.
more »
« less
Westward-Propagating Rossby Modes in Idealized GCMs
Abstract This work investigates the characteristics of westward-propagating Rossby modes in idealized global general circulation models. Using a nonlinear smoothing algorithm to estimate the background spectrum and an objective method to extract the spectral peaks, the four leading meridional modes can be identified for each of the first three zonal wavenumbers, with frequencies close to the predictions from the Hough modes obtained by linearizing about a state of rest. Variations in peak amplitude for different modes, both within a simulation and across simulations, may be understood under the assumption that the forcing of the modes scales with the background spectrum. Surface friction affects the amplitude and width of the peaks but both remain finite as friction goes to zero, which implies that some other mechanism, arguably nonlinear, must also contribute to the damping of the modes. Although spectral peaks are also observed for the precipitation field with idealized moist physics, there is no evidence of mode enhancement by the convective heating. Subject to the same friction, the amplitude of the peaks are very similar in the dry and moist models when both are normalized by the background spectra.
more »
« less
- Award ID(s):
- 1733818
- PAR ID:
- 10474833
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 78
- Issue:
- 5
- ISSN:
- 0022-4928
- Format(s):
- Medium: X Size: p. 1503-1522
- Size(s):
- p. 1503-1522
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate the sensitivity of mesoscale atmospheric predictability to the slope of the background kinetic energy spectrum E by adding initial errors to simulations of idealized moist midlatitude cyclones at several wavenumbers k for which the slope of E (k) is significantly different. These different slopes arise from 1) differences in the E (k) generated by cyclones growing in two different moist baroclinically unstable environments, and 2) differences in the horizontal scale at which initial perturbations are added, with E (k) having steeper slopes at larger scales. When small-amplitude potential temperature perturbations are added, the error growth through the subsequent 36-h simulation is not sensitive to the slope of E (k) nor to the horizontal scale of the initial error. In all cases with small-amplitude perturbations, the error growth in physical space is dominated by moist convection along frontal boundaries. As such, the error field is localized in physical space and broad in wavenumber (spectral) space. In moist midlatitude cyclones, these broadly distributed errors in wavenumber space limit mesoscale predictability by growing up-amplitude rather than by cascading upscale to progressively longer wavelengths. In contrast, the error distribution in homogeneous turbulence is broad in physical space and localized in wavenumber space, and dimensional analysis can be used to estimate the error growth rate at a specific wavenumber k from E (k). Predictability estimates derived in this manner, and from the numerical solutions of idealized models of homogeneous turbulence, depend on whether the slope of E (k) is shallower or steeper than k^ −3 , which differs from the slope-insensitive behavior exhibited by moist midlatitude cyclones.more » « less
-
Abstract The vertical velocity distribution in the atmosphere is asymmetric with stronger upward than downward motion. This asymmetry is important for the distribution of precipitation and its extremes and for an effective static stability that has been used to represent the effects of latent heating on extratropical eddies. Idealized GCM simulations show that the asymmetry increases as the climate warms, but current moist dynamical theories based around small-amplitude modes greatly overestimate the increase in asymmetry with warming found in the simulations. Here, we first analyze the changes in asymmetry with warming using numerical inversions of a moist quasigeostrophic omega equation applied to output from the idealized GCM. The inversions show that increases in the asymmetry with warming in the GCM simulations are primarily related to decreases in moist static stability on the left-hand side of the moist omega equation, whereas the dynamical forcing on the right-hand side of the omega equation is unskewed and contributes little to the asymmetry of the vertical velocity distribution. By contrast, increases in asymmetry with warming for small-amplitude modes are related to changes in both moist static stability and dynamical forcing leading to enhanced asymmetry in warm climates. We distill these insights into a toy model of the moist omega equation that is solved for a given moist static stability and wavenumber of the dynamical forcing. In comparison to modal theory, the toy model better reproduces the slow increase of the asymmetry with climate warming in the idealized GCM simulations and over the seasonal cycle from winter to summer in reanalysis. Significance StatementUpward velocities are stronger than downward velocities in the atmosphere, and this asymmetry is important for the distribution of precipitation because precipitation is linked to upward motion. An important and open question is what sets this asymmetry and how much it increases as the climate warms. Past work has shown that current theories greatly overestimate the increase in asymmetry with warming in idealized simulations. In this work, we develop a more complete theory and show that it is able to better reproduce the slow increase of the asymmetry with warming that is found over the seasonal cycle from winter to summer and in idealized simulations of warming climates.more » « less
-
Abstract We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally periodic and spatially localized structures, in a two-dimensional array of repelling magnets. In our experiments, we arrange a lattice in a hexagonal configuration with a light-mass defect, and we harmonically drive the center of the chain with a tunable excitation frequency, amplitude, and angle. We use a damped, driven variant of a vector Fermi–Pasta–Ulam–Tsingou lattice to model our experimental setup. Despite the idealized nature of this model, we obtain good qualitative agreement between theory and experiments for a variety of dynamical behaviors. We find that the spatial decay is direction-dependent and that drive amplitudes along fundamental displacement axes lead to nonlinear resonant peaks in frequency continuations that are similar to those that occur in one-dimensional damped, driven lattices. However, we observe numerically that driving along other directions results in asymmetric NLMs that bifurcate from the main solution branch, which consists of symmetric NLMs. We also demonstrate both experimentally and numerically that solutions that appear to be time-quasiperiodic bifurcate from the branch of symmetric time-periodic NLMs.more » « less
-
Abstract There is compelling evidence that atmospheric moisture may either increase or decrease midlatitude eddy kinetic energy (EKE). We reconcile these findings by using a hierarchy of idealized atmospheric models to demonstrate that moisture energizes individual eddies given fixed large-scale background winds and temperatures but makes those background conditions less favorable for eddy growth. For climates similar to the present day, the latter effect wins out, and moisture weakens midlatitude eddy activity. The model hierarchy includes a moist two-layer quasigeostrophic (QG) model and an idealized moist general circulation model (GCM). In the QG model, EKE increases when moisture is added to simulations with fixed baroclinicity, closely following a previously derived scaling. But in both models, moisture decreases EKE when environmental conditions are allowed to vary. We explain these results by examining the models’ mean available potential energy (MAPE) and by calculating terms in the models’ Lorenz energy cycles. In the QG model, the EKE decreases because precipitation preferentially forms on the poleward side of the jet, releasing latent heat where the model is relatively cold and decreasing the MAPE, hence the EKE. In the moist GCM, the MAPE primarily decreases because the midlatitude stability increases as the model is moistened, with reduced meridional temperature gradients playing a secondary role. Together, these results clarify moisture’s role in driving the midlatitude circulation and also highlight several drawbacks of QG models for studying moist processes in midlatitudes. Significance StatementDry models of the atmosphere have played a central role in the study of large-scale atmospheric dynamics. But we know that moisture adds much complexity, associated with phase changes, its effect on atmospheric stability, and the release of latent heat during condensation. Here, we take an important step toward incorporating moisture into our understanding of midlatitude dynamics by reconciling two diverging lines of literature, which suggest that atmospheric moisture can either increase or decrease midlatitude eddy kinetic energy. We explain these opposing results by showing that moisture not only makes individual eddies more energetic but also makes the environment in which eddies form less favorable for eddy growth. For climates similar to the present day, the latter effect wins out such that moisture decreases atmospheric eddy kinetic energy. We demonstrate this point using several different idealized atmospheric models, which allow us to gradually add complexity and to smoothly vary between moist and dry climates. These results add fundamental understanding to how moisture affects midlatitude climates, including how its effects change in warmer and moisture climates, while also highlighting some drawbacks of the idealized atmospheric models.more » « less
An official website of the United States government
