skip to main content

Search for: All records

Award ID contains: 1734164

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We explore the potential of feed‐forward deep neural networks (DNNs) for emulating cloud superparameterization in realistic geography, using offline fits to data from the superparameterized community atmospheric model. To identify the network architecture of greatest skill, we formally optimize hyperparameters using ∼250 trials. Our DNN explains over 70% of the temporal variance at the 15‐min sampling scale throughout the mid‐to‐upper troposphere. Autocorrelation timescale analysis compared against DNN skill suggests the less good fit in the tropical, marine boundary layer is driven by neural network difficulty emulating fast, stochastic signals in convection. However, spectral analysis in the temporal domain indicates skillful emulation of signals on diurnal to synoptic scales. A closer look at the diurnal cycle reveals correct emulation of land‐sea contrasts and vertical structure in the heating and moistening fields, but some distortion of precipitation. Sensitivity tests targeting precipitation skill reveal complementary effects of adding positive constraints versus hyperparameter tuning, motivating the use of both in the future. A first attempt to force an offline land model with DNN emulated atmospheric fields produces reassuring results further supporting neural network emulation viability in real‐geography settings. Overall, the fit skill is competitive with recent attempts by sophisticated Residual and Convolutional Neural Network architectures trained on added information, including memory of past states. Our results confirm the parameterizability of superparameterized convection with continents through machine learning and we highlight the advantages of casting this problem locally in space and time for accurate emulation and hopefully quick implementation of hybrid climate models.

    more » « less
  2. Abstract

    The Madden–Julian Oscillation (MJO) is widely acknowledged for its ability to modulate Northwest Pacific tropical cyclones (TCs), but a complete understanding of the underlying mechanisms remains uncertain. Beyond established effects of the MJO's relative humidity envelope, other dynamical factors have recently been invoked via new genesis potential indices and high‐resolution modeling studies. Here we revisit the ability of the MJO to modulate West Pacific TCs through a quasi‐explicit cyclone downscaling strategy driven by composited observations, paired later with a genesis index to investigate regional drivers of modulation. We reveal two distinct spatial modes of TC modulation in which the MJO's dynamic and thermodynamic effects act in tandem to increase TCs. In the South China Sea, for instance, shear reductions associated with the MJO's circulation lead to increasing potential intensity ahead of the arrival of a positive humidity anomaly, all of which combine for an extended period of cyclogenesis favorability.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way bridge connects environments where deep learning resources are plentiful with those where they are scarce. The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles. The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation, in which subgrid physics are outsourced to deep neural network emulators. In this context, FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and radiation physics, initially implemented in Keras, to be transferred and used in Fortran. Such a process allows the model’s emergent behavior to be assessed, i.e., when fit imperfections are coupled to explicit planetary-scale fluid dynamics. The results reveal a previously unrecognized strong relationship between offline validation error and online performance, in which the choice of the optimizer proves unexpectedly critical. This in turn reveals many new neural network architectures that produce considerable improvements in climate model stability including some with reduced error, for an especially challenging training dataset. 
    more » « less
  6. ABSTRACT Regional climate modeling addresses our need to understand and simulate climatic processes and phenomena unresolved in global models. This paper highlights examples of current approaches to and innovative uses of regional climate modeling that deepen understanding of the climate system. High-resolution models are generally more skillful in simulating extremes, such as heavy precipitation, strong winds, and severe storms. In addition, research has shown that fine-scale features such as mountains, coastlines, lakes, irrigation, land use, and urban heat islands can substantially influence a region’s climate and its response to changing forcings. Regional climate simulations explicitly simulating convection are now being performed, providing an opportunity to illuminate new physical behavior that previously was represented by parameterizations with large uncertainties. Regional and global models are both advancing toward higher resolution, as computational capacity increases. However, the resolution and ensemble size necessary to produce a sufficient statistical sample of these processes in global models has proven too costly for contemporary supercomputing systems. Regional climate models are thus indispensable tools that complement global models for understanding physical processes governing regional climate variability and change. The deeper understanding of regional climate processes also benefits stakeholders and policymakers who need physically robust, high-resolution climate information to guide societal responses to changing climate. Key scientific questions that will continue to require regional climate models, and opportunities are emerging for addressing those questions. 
    more » « less
  7. null (Ed.)
    While cloud-resolving models can explicitly simulate the details of small-scale storm formation and morphology, these details are often ignored by climate models for lack of computational resources. Here, we explore the potential of generative modeling to cheaply recreate small-scale storms by designing and implementing a Variational Autoencoder (VAE) that performs structural replication, dimension- ality reduction, and clustering of high-resolution vertical velocity fields. Trained on ∼ 6 · 106 samples spanning the globe, the VAE successfully reconstructs the spatial structure of convection, per- forms unsupervised clustering of convective organization regimes, and identifies anomalous storm activity, confirming the potential of generative modeling to power stochastic parameterizations of convection in climate models. 
    more » « less