skip to main content

Search for: All records

Award ID contains: 1734251

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Thermodynamical and dynamical aspects of the climate system response to an-thropogenic forcing are often considered in two distinct frameworks: The former in the context of the forcing-feedback framework; the latter in the context of eddy-mean flow feedbacks and large-scale thermodynamic constraints. Here we use experiments with the dynamical core of a general circulation model (GCM) to provide insights into the relationships between these two frameworks. We first demonstrate that the climate feedbacks and climate sensitivity in a dynamical core model are determined by its prescribed thermal relaxation timescales. We then perform two experiments: One that explores the relationships between the thermal relaxation timescale and the climatological circulation; and a second that explores the relationships between the thermal relaxation timescale and the circulation response to a global warming-like forcing perturbation. The results indicate that shorter relaxation timescales (i.e., lower climate sensitivities in the context of a dynamical core model) are associated with 1) a more vigorous large-scale circulation, including increased thermal diffusivity and stronger and more poleward storm tracks and eddy-driven jets and 2) a weaker poleward displacement of the storm tracks and eddy-driven jets in response to the global warming-like forcing perturbation. Interestingly, the circulation response to the forcingmore »perturbation effectively disappears when the thermal relaxation timescales are spatially uniform, suggesting that the circulation response to homogeneous forcing requires spatial inhomogeneities in the local feedback parameter. Implications for anticipating the circulation response to global warming and thermodynamic constraints on the circulation are discussed.« less
    Free, publicly-accessible full text available March 9, 2023
  2. Abstract This study offers an overview of the low-frequency (i.e., monthly to seasonal) evolution, dynamics, predictability, and surface impacts of a rare Southern Hemisphere (SH) stratospheric warming that occurred in austral spring 2019. Between late August and mid-September 2019, the stratospheric circumpolar westerly jet weakened rapidly, and Antarctic stratospheric temperatures rose dramatically. The deceleration of the vortex at 10 hPa was as drastic as that of the first-ever-observed major sudden stratospheric warming in the SH during 2002, while the mean Antarctic warming over the course of spring 2019 broke the previous record of 2002 by ∼50% in the midstratosphere. This event was preceded by a poleward shift of the SH polar night jet in the uppermost stratosphere in early winter, which was then followed by record-strong planetary wave-1 activity propagating upward from the troposphere in August that acted to dramatically weaken the polar vortex throughout the depth of the stratosphere. The weakened vortex winds and elevated temperatures moved downward to the surface from mid-October to December, promoting a record strong swing of the southern annular mode (SAM) to its negative phase. This record-negative SAM appeared to be a primary driver of the extreme hot and dry conditions over subtropical easternmore »Australia that accompanied the severe wildfires that occurred in late spring 2019. State-of-the-art dynamical seasonal forecast systems skillfully predicted the significant vortex weakening of spring 2019 and subsequent development of negative SAM from as early as late July.« less
  3. null (Ed.)
    Abstract Understanding the role of the ocean in climate variability requires first understanding the role of ocean dynamics in the ocean mixed layer and thus sea surface temperature variability. However, key aspects of the spatially and temporally varying contributions of ocean dynamics to such variability remain unclear. Here, the authors quantify the contributions of ocean dynamical processes to mixed layer temperature variability on monthly to multiannual time scales across the globe. To do so, they use two complementary but distinct methods: 1) a method in which ocean heat transport is estimated directly from a state-of-the-art ocean state estimate spanning 1992–2015 and 2) a method in which it is estimated indirectly from observations between 1980–2017 and the energy budget of the mixed layer. The results extend previous studies by providing quantitative estimates of the role of ocean dynamics in mixed layer temperature variability throughout the globe, across a range of time scales, in a range of available measurements, and using two different methods. Consistent with previous studies, both methods indicate that the ocean-dynamical contribution to mixed layer temperature variance is largest over western boundary currents, their eastward extensions, and regions of equatorial upwelling. In contrast to previous studies, the results suggestmore »that ocean dynamics reduce the variance of Northern Hemisphere mixed layer temperatures on time scales longer than a few years. Hence, in the global mean, the fractional contribution of ocean dynamics to mixed layer temperature variability decreases at increasingly low frequencies. Differences in the magnitude of the ocean dynamical contribution based on the two methods highlight the critical need for improved and continuous observations of the ocean mixed layer.« less
  4. Abstract Baroclinic waves drive both regional variations in weather and large-scale variability in the extratropical general circulation. They generally do not exist in isolation, but rather often form into coherent wave packets that propagate to the east via a mechanism called downstream development. Downstream development has been widely documented and explored. Here we document a novel but also key aspect of baroclinic waves: the downstream suppression of baroclinic activity that occurs in the wake of eastward propagating disturbances. Downstream suppression is apparent not only in the Southern Hemisphere storm track as shown in previous work, but also in the North Pacific and North Atlantic storm tracks. It plays an essential role in driving subseasonal periodicity in extratropical eddy activity in both hemispheres, and gives rise to the observed quiescence of the North Atlantic storm track 1–2 weeks following pronounced eddy activity in the North Pacific sector. It is argued that downstream suppression results from the anomalously low baroclinicity that arises as eastward propagating wave packets convert potential to kinetic energy. In contrast to baroclinic wave packets, which propagate to the east at roughly the group velocity in the upper troposphere, the suppression of baroclinic activity propagates eastward at a slowermore »rate that is comparable to that of the lower to midtropospheric flow. The results have implications for understanding subseasonal variability in the extratropical troposphere of both hemispheres.« less
  5. Abstract Previous studies showed that global cloud-radiative changes contribute half or more to the midlatitude atmospheric circulation response to global warming. Here, we investigate the relative importance of tropical, midlatitude, and polar cloud-radiative changes for the annual-mean, wintertime, and summertime circulation response across regions in AMIP-like simulations. To this end, we study global warming simulations from the ICON model run with the cloud-locking method and prescribed sea surface temperatures, which isolate the impact of changes in atmospheric cloud-radiative heating. Tropical cloud changes dominate the global cloud impact on the 850 hPa zonal wind, jet strength, and storm track responses across most seasons and regions. For the jet shift, a more diverse picture is found. In the annual mean and DJF, tropical and midlatitude cloud changes contribute substantially to the poleward jet shift in all regions. The poleward jet shift is further supported by polar cloud changes across the Northern Hemisphere but not in the Southern Hemisphere. In JJA, the impact of regional cloud changes on the jet position is small, consistent with an overall small jet shift during this season. The jet shift can be largely understood via the anomalous atmospheric cloud-radiative heating in the tropical and midlatitude upper troposphere.more »The circulation changes are broadly consistent with the influence of cloud-radiative changes on upper-tropospheric baroclinicity and thus the mean potential energy available for conversion into eddy kinetic energy. Our results help to explain the jet response to global warming and highlight the importance of tropical and midlatitude cloud-radiative changes for this response.« less
  6. Cloud radiative effects (CREs) are known to play a central role in governing the long-term mean distribution of sea surface temperatures (SSTs). Very recent work suggests that CREs may also play a role in governing the variability of SSTs in the context of El Niño–Southern Oscillation. Here, the authors exploit numerical simulations in the Max Planck Institute Earth System Model with two different representations of CREs to demonstrate that coupling between CREs and the atmospheric circulation has a much more general and widespread effect on tropical climate than that indicated in previous work. The results reveal that coupling between CREs and the atmospheric circulation leads to robust increases in SST variability on time scales longer than a month throughout the tropical oceans. Remarkably, cloud–circulation coupling leads to more than a doubling of the amplitude of decadal-scale variability in tropical-mean SSTs. It is argued that the increases in tropical SST variance derive primarily from the coupling between SSTs and shortwave CREs: Coupling increases the memory in shortwave CREs on hourly and daily time scales and thus reddens the spectrum of shortwave CREs and increases their variance on time scales spanning weeks to decades. Coupling between SSTs and CREs does not noticeablymore »affect the variance of SSTs in the extratropics, where the effects from variability in CREs on the surface energy budget are much smaller than the effects from the turbulent heat fluxes. The results indicate a basic but critical role of CREs in climate variability throughout the tropics.

    « less