skip to main content


Title: The 2019 Southern Hemisphere Stratospheric Polar Vortex Weakening and Its Impacts
Abstract This study offers an overview of the low-frequency (i.e., monthly to seasonal) evolution, dynamics, predictability, and surface impacts of a rare Southern Hemisphere (SH) stratospheric warming that occurred in austral spring 2019. Between late August and mid-September 2019, the stratospheric circumpolar westerly jet weakened rapidly, and Antarctic stratospheric temperatures rose dramatically. The deceleration of the vortex at 10 hPa was as drastic as that of the first-ever-observed major sudden stratospheric warming in the SH during 2002, while the mean Antarctic warming over the course of spring 2019 broke the previous record of 2002 by ∼50% in the midstratosphere. This event was preceded by a poleward shift of the SH polar night jet in the uppermost stratosphere in early winter, which was then followed by record-strong planetary wave-1 activity propagating upward from the troposphere in August that acted to dramatically weaken the polar vortex throughout the depth of the stratosphere. The weakened vortex winds and elevated temperatures moved downward to the surface from mid-October to December, promoting a record strong swing of the southern annular mode (SAM) to its negative phase. This record-negative SAM appeared to be a primary driver of the extreme hot and dry conditions over subtropical eastern Australia that accompanied the severe wildfires that occurred in late spring 2019. State-of-the-art dynamical seasonal forecast systems skillfully predicted the significant vortex weakening of spring 2019 and subsequent development of negative SAM from as early as late July.  more » « less
Award ID(s):
1734251
NSF-PAR ID:
10296907
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
102
Issue:
6
ISSN:
0003-0007
Page Range / eLocation ID:
E1150 to E1171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A strong Southern Hemisphere (SH) sudden stratospheric warming event occurred in September 2019 and significantly weakened the stratospheric polar vortex. Due to the positive zonal wind anomalies in the troposphere, the barotropic/baroclinic instability, primarily controlled by the horizontal/vertical wind shear, weakened in the upper troposphere at midlatitudes in late September and early October. As a result, planetary waves (PWs) were deflected equatorward near the tropopause rather than upward into the stratosphere, resulting in less perturbation to the stratospheric polar vortex. After October 15, the westward zonal wind anomalies propagate downward and reach the troposphere, increasing the tropospheric barotropic/baroclinic instability. This benefits the propagation of PWs into the stratosphere, leading to the early breaking of the stratospheric polar vortex. In turn, the SH mesosphere becomes anomalously cold due to the stratospheric wind filtering on the gravity waves, leading to the much earlier onset of SH polar mesospheric clouds.

     
    more » « less
  2. null (Ed.)
    The manuscript assesses the current and expected future global drivers of Southern Ocean (SO) ecosystems. Atmospheric ozone depletion over the Antarctic since the 1970s, has been a key driver, resulting in springtime cooling of the stratosphere and intensification of the polar vortex, increasing the frequency of positive phases of the Southern Annular Mode (SAM). This increases warm air-flow over the East Pacific sector (Western Antarctic Peninsula) and cold air flow over the West Pacific sector. SAM as well as El Niño Southern Oscillation events also affect the Amundsen Sea Low leading to either positive or negative sea ice anomalies in the west and east Pacific sectors, respectively. The strengthening of westerly winds is also linked to shoaling of deep warmer water onto the continental shelves, particularly in the East Pacific and Atlantic sectors. Air and ocean warming has led to changes in the cryosphere, with glacial and ice sheet melting in both sectors, opening up new ice free areas to biological productivity, but increasing seafloor disturbance by icebergs. The increased melting is correlated with a salinity decrease particularly in the surface 100 m. Such processes could increase the availability of iron, which is currently limiting primary production over much of the SO. Increasing CO 2 is one of the most important SO anthropogenic drivers and is likely to affect marine ecosystems in the coming decades. While levels of many pollutants are lower than elsewhere, persistent organic pollutants (POPs) and plastics have been detected in the SO, with concentrations likely enhanced by migratory species. With increased marine traffic and weakening of ocean barriers the risk of the establishment of non-indigenous species is increased. The continued recovery of the ozone hole creates uncertainty over the reversal in sea ice trends, especially in the light of the abrupt transition from record high to record low Antarctic sea ice extent since spring 2016. The current rate of change in physical and anthropogenic drivers is certain to impact the Marine Ecosystem Assessment of the Southern Ocean (MEASO) region in the near future and will have a wide range of impacts across the marine ecosystem. 
    more » « less
  3. Abstract

    As the leading mode of Pacific variability, El Niño–Southern Oscillation (ENSO) causes vast and widespread climatic impacts, including in the stratosphere. Following discovery of a stratospheric pathway of ENSO to the Northern Hemisphere surface, here we aim to investigate if there is a substantial Southern Hemisphere (SH) stratospheric pathway in relation to austral winter ENSO events. Large stratospheric anomalies connected to ENSO occur on average at high SH latitudes as early as August, peaking at around 10 hPa. An overall colder austral spring Antarctic stratosphere is generally associated with the warm phase of the ENSO cycle, and vice versa. This behavior is robust among reanalysis and six separate model ensembles encompassing two different model frameworks. A stratospheric pathway is identified by separating ENSO events that exhibit a stratospheric anomaly from those that do not and comparing to stratospheric extremes that occur during neutral ENSO years. The tropospheric eddy-driven jet response to the stratospheric ENSO pathway is the most robust in the spring following a La Niña, but extends into summer, and is more zonally symmetric compared to the tropospheric ENSO teleconnection. The magnitude of the stratospheric pathway is weaker compared to the tropospheric pathway and therefore, when it is present, has a secondary role. For context, the magnitude is approximately half that of the eddy-driven jet modulation due to austral spring ozone depletion in the model simulations. This work establishes that the stratospheric circulation acts as an intermediary in coupling ENSO variability to variations in the austral spring and summer tropospheric circulation.

     
    more » « less
  4. Abstract

    This study investigates the stratospheric response to Arctic sea ice loss and subsequent near-surface impacts by analyzing 200-member coupled experiments using the Whole Atmosphere Community Climate Model version 6 (WACCM6) with preindustrial, present-day, and future sea ice conditions specified following the protocol of the Polar Amplification Model Intercomparison Project. The stratospheric polar vortex weakens significantly in response to the prescribed sea ice loss, with a larger response to greater ice loss (i.e., future minus preindustrial) than to smaller ice loss (i.e., future minus present-day). Following the weakening of the stratospheric circulation in early boreal winter, the coupled stratosphere–troposphere response to ice loss strengthens in late winter and early spring, projecting onto a negative North Atlantic Oscillation–like pattern in the lower troposphere. To investigate whether the stratospheric response to sea ice loss and subsequent surface impacts depend on the background oceanic state, ensemble members are initialized by a combination of varying phases of Atlantic multidecadal variability (AMV) and interdecadal Pacific variability (IPV). Different AMV and IPV states combined, indeed, can modulate the stratosphere–troposphere responses to sea ice loss, particularly in the North Atlantic sector. Similar experiments with another climate model show that, although strong sea ice forcing also leads to tighter stratosphere–troposphere coupling than weak sea ice forcing, the timing of the response differs from that in WACCM6. Our findings suggest that Arctic sea ice loss can affect the stratospheric circulation and subsequent tropospheric variability on seasonal time scales, but modulation by the background oceanic state and model dependence need to be taken into account.

    Significance Statement

    This study uses new-generation climate models to better understand the impacts of Arctic sea ice loss on the surface climate in the midlatitudes, including North America, Europe, and Siberia. We focus on the stratosphere–troposphere pathway, which involves the weakening of stratospheric winds and its downward coupling into the troposphere. Our results show that Arctic sea ice loss can affect the surface climate in the midlatitudes via the stratosphere–troposphere pathway, and highlight the modulations from background mean oceanic states as well as model dependence.

     
    more » « less
  5. Abstract

    Southern Hemisphere (SH) stratospheric sudden warmings (SSWs) result in smaller Antarctic ozone holes and are linked to extreme midlatitude weather on subseasonal to seasonal timescales. Therefore, it is of interest how often such events occur and whether we should expect more events in the future. Here, we use a pair of novel multimillennial simulations with a stratosphere‐resolving coupled ocean‐atmosphere climate model to show that the frequency of SSWs, such as observed 2002 and 2019, is about one in 22 years for 1990 conditions. In addition, we show that we should expect the frequency of SSWs, and that of more moderate vortex weakening events, to strongly decrease by the end of this century.

     
    more » « less