skip to main content

Search for: All records

Award ID contains: 1734443

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Across a wide variety of domains, artificial agents that can adapt and personalize to users have potential to improve and transform how social services are provided. Because of the need for personalized interaction data to drive this process, long-term (or longitudinal) interactions between users and agents, which unfold over a series of distinct interaction sessions, have attracted substantial research interest. In recognition of the expanded scope and structure of a long-term interaction, researchers are also adjusting the personalization models and algorithms used, orienting toward “continual learning” methods, which do not assume a stationary modeling target and explicitly account for the temporal context of training data. In parallel, researchers have also studied the effect of “multitask personalization,” an approach in which an agent interacts with users over multiple different tasks contexts throughout the course of a long-term interaction and learns personalized models of a user that are transferrable across these tasks. In this paper, we unite these two paradigms under the framework of “Lifelong Personalization,” analyzing the effect of multitask personalization applied to dynamic, non-stationary targets. We extend the multi-task personalization approach to the more complex and realistic scenario of modeling dynamic learners over time, focusing in particular on interactive scenarios in which the modeling agent plays an active role in teaching the student whose knowledge the agent is simultaneously attempting to model. Inspired by the way in which agents use active learning to select new training data based on domain context, we augment a Gaussian Process-based multitask personalization model with a mechanism to actively and continually manage its own training data, allowing a modeling agent to remove or reduce the weight of observed data from its training set, based on interactive context cues. We evaluate this method in a series of simulation experiments comparing different approaches to continual and multitask learning on simulated student data. We expect this method to substantially improve learning in Gaussian Process models in dynamic domains, establishing Gaussian Processes as another flexible modeling tool for Long-term Human-Robot Interaction (HRI) Studies. 
    more » « less
  2. null (Ed.)
    To help facilitate play and learning, game-based educational activities often feature a computational agent as a co-player. Personalizing this agent's behavior to the student player is an active area of research, and prior work has demonstrated the benefits of personalized educational interaction across a variety of domains. A critical research challenge for personalized educational agents is real-time student modeling. Most student models are designed for and trained on only a single task, which limits the variety, flexibility, and efficiency of student player model learning. In this paper we present a research project applying transfer learning methods to student player models over different educational tasks, studying the effects of an algorithmic "multi-task personalization" approach on the accuracy and data efficiency of student model learning. We describe a unified robotic game system for studying multi-task personalization over two different educational games, each emphasizing early language and literacy skills such as rhyming and spelling. We present a flexible Gaussian Process-based approach for rapidly learning student models from interactive play in each game, and a method for transferring each game's learned student model to the other via a novel instance-weighting protocol based on task similarity. We present results from a simulation-based investigation of the impact of multi-task personalization, establishing the core viability and benefits of transferrable student models and outlining new questions for future in-person research. 
    more » « less
  3. Prior work in affect-aware educational robots has often relied on a common belief that the relationship between student affect and learning is independent of agent behaviors (child’s/robot’s) or unidirectional (positive/negative but not both) throughout the entire student-robot interaction.We argue that the student affect-learning relationship should be interpreted in two contexts: (1) social learning paradigm and (2) sub-events within child-robot interaction. In our paper, we examine two different social learning paradigms where children interact with a robot that acts either as a tutor or a tutee. Sub-events within child-robot interaction are defined as task-related events occurring in specific phases of an interaction (e.g., when the child/robot gets a wrong answer). We examine subevents at a macro level (entire interaction) and a micro level (within specific sub-events). In this paper, we provide an in-depth correlation analysis of children’s facial affect and vocabulary learning. We found that children’s affective displays became more predictive of their vocabulary learning when children interacted with a tutee robot who did not scaffold their learning. Additionally, children’s affect displayed during micro-level events was more predictive of their learning than during macro-level events. Last, we found that the affect-learning relationship is not unidirectional, but rather is modulated by context, i.e., several affective states facilitated student learning when displayed in some sub-events but inhibited learning when displayed in others. These findings indicate that both social learning paradigm and sub-events within interaction modulate student affect-learning relationship. 
    more » « less
  4. Intelligent tutoring systems (ITS) provide educational benefits through one-on-one tutoring by assessing children’s existing knowledge and providing tailored educational content. In the domain of language acquisition, several studies have shown that children often learn new words by forming semantic relationships with words they already know. In this paper, we present a model that uses word semantics (semantics-based model) to make inferences about a child’s vocabulary from partial information about their existing vocabulary knowledge. We show that the proposed semantics-based model outperforms models that do not use word semantics (semantics-free models) on average. A subject-level analysis of results reveals that different models perform well for different children, thus motivating the need to combine predictions. To this end, we use two methods to combine predictions from semantics-based and semantics-free models and show that these methods yield better predictions of a child’s vocabulary knowledge. Our results motivate the use of semantics-based models to assess children’s vocabulary knowledge and build ITS that maximizes children’s semantic understanding of words. 
    more » « less
  5. Autonomous educational social robots can be used to help promote literacy skills in young children. Such robots, which emulate the emotive, perceptual, and empathic abilities of human teachers, are capable of replicating some of the benefits of one-on-one tutoring from human teachers, in part by leveraging individual student’s behavior and task performance data to infer sophisticated models of their knowledge. These student models are then used to provide personalized educational experiences by, for example, determining the optimal sequencing of curricular material. In this paper, we introduce an integrated system for autonomously analyzing and assessing children’s speech and pronunciation in the context of an interactive word game between a social robot and a child. We present a novel game environment and its computational formulation, an integrated pipeline for capturing and analyzing children’s speech in real-time, and an autonomous robot that models children’s word pronunciation via Gaussian Process Regression (GPR), augmented with an Active Learning protocol that informs the robot’s behavior. We show that the system is capable of autonomously assessing children’s pronunciation ability, with ground truth determined by a post-experiment evaluation by human raters. We also compare phoneme- and word-level GPR models and discuss trade-offs of each approach in modeling children’s pronunciation. Finally, we describe and analyze a pipeline for automatic analysis of children’s speech and pronunciation, including an evaluation of Speech Ace as a tool for future development of autonomous, speech-based language tutors. 
    more » « less