skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1734586

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Today’s passive prosthetic technologies limit the well-being of millions of individuals with amputations, who often walk slower, use more energy, fall more often, and develop devastating secondary deficits over time. Robotic prostheses hold the promise to address many of these challenges, but safe, reliable control strategies have remained out of reach—that is, a critical gap is the ability to provide appropriate instructions to robotic legs that enable robust ambulation in the real world. Fortunately, there are many researchers studying control strategies, but each group tests their strategies with different robotic hardware in constrained laboratory settings. This mismatch in prosthesis hardware severely limits comparison of control solutions and, along with the lack of testing in real-world environments, hinders the translation of these promising technologies. To address these challenges, we developed the Open Source Leg (OSL): a robotic knee-ankle prosthesis that facilitates controls, biomechanics, and clinical research. This paper describes the design innovations required to develop a bionic leg for broad dissemination, characterization of the OSL’s electromechanical performance, and clinical demonstration with an advanced high-level control strategy, tested with three individuals with above-knee amputations. The OSL provides a common hardware platform for scientific studies and clinical testing, lowers the barrier for new prosthetics research, and enables research beyond the laboratory: in more realistic environments, such as the hospital, community, and home. 
    more » « less