skip to main content


Title: Design, Control, and Clinical Implementation of an Open Source Robotic Leg Prosthesis
Today’s passive prosthetic technologies limit the well-being of millions of individuals with amputations, who often walk slower, use more energy, fall more often, and develop devastating secondary deficits over time. Robotic prostheses hold the promise to address many of these challenges, but safe, reliable control strategies have remained out of reach—that is, a critical gap is the ability to provide appropriate instructions to robotic legs that enable robust ambulation in the real world. Fortunately, there are many researchers studying control strategies, but each group tests their strategies with different robotic hardware in constrained laboratory settings. This mismatch in prosthesis hardware severely limits comparison of control solutions and, along with the lack of testing in real-world environments, hinders the translation of these promising technologies. To address these challenges, we developed the Open Source Leg (OSL): a robotic knee-ankle prosthesis that facilitates controls, biomechanics, and clinical research. This paper describes the design innovations required to develop a bionic leg for broad dissemination, characterization of the OSL’s electromechanical performance, and clinical demonstration with an advanced high-level control strategy, tested with three individuals with above-knee amputations. The OSL provides a common hardware platform for scientific studies and clinical testing, lowers the barrier for new prosthetics research, and enables research beyond the laboratory: in more realistic environments, such as the hospital, community, and home.  more » « less
Award ID(s):
1760247 1734586
NSF-PAR ID:
10186611
Author(s) / Creator(s):
Date Published:
Journal Name:
Nature biomedical engineering
ISSN:
2157-846X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In individuals with lower-limb amputations, robotic prostheses can increase walking speed, and reduce energy use, the incidence of falls and the development of secondary complications. However, safe and reliable prosthetic-limb control strategies for robust ambulation in real-world settings remain out of reach, partly because control strategies have been tested with different robotic hardware in constrained laboratory settings. Here, we report the design and clinical implementation of an integrated robotic knee–ankle prosthesis that facilitates the real-world testing of its biomechanics and control strategies. The bionic leg is open source, it includes software for low-level control and for communication with control systems, and its hardware design is customizable, enabling reduction in its mass and cost, improvement in its ease of use and independent operation of the knee and ankle joints. We characterized the electromechanical and thermal performance of the bionic leg in benchtop testing, as well as its kinematics and kinetics in three individuals during walking on level ground, ramps and stairs. The open-source integrated-hardware solution and benchmark data that we provide should help with research and clinical testing of knee–ankle prostheses in real-world environments.

     
    more » « less
  2. Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis' lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home. 
    more » « less
  3. Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis’ lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home. 
    more » « less
  4. Abstract Objective. Advanced robotic lower limb prostheses are mainly controlled autonomously. Although the existing control can assist cyclic movements during locomotion of amputee users, the function of these modern devices is still limited due to the lack of neuromuscular control (i.e. control based on human efferent neural signals from the central nervous system to peripheral muscles for movement production). Neuromuscular control signals can be recorded from muscles, called electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic lower limb prostheses control has been an emerging research topic in the field for the past decade to address novel prosthesis functionality and adaptability to different environments and task contexts. The objective of this paper is to review robotic lower limb Prosthesis control via EMG signals recorded from residual muscles in individuals with lower limb amputations. Approach. We performed a literature review on surgical techniques for enhanced EMG interfaces, EMG sensors, decoding algorithms, and control paradigms for robotic lower limb prostheses. Main results. This review highlights the promise of EMG control for enabling new functionalities in robotic lower limb prostheses, as well as the existing challenges, knowledge gaps, and opportunities on this research topic from human motor control and clinical practice perspectives. Significance. This review may guide the future collaborations among researchers in neuromechanics, neural engineering, assistive technologies, and amputee clinics in order to build and translate true bionic lower limbs to individuals with lower limb amputations for improved motor function. 
    more » « less
  5. Although beginning to emerge, multiarticulate upper limb prostheses for children remain sparse despite the continued advancement of mechatronic technologies that have benefited adults with upper limb amputations. Upper limb prosthesis research is primarily focused on adults, even though rates of pediatric prosthetic abandonment far surpass those seen in adults. The implicit goal of a prosthesis is to provide effective functionality while promoting healthy social interaction. Yet most current pediatric devices offer a single degree of freedom open/close grasping function, a stark departure from the multiple grasp configurations provided in advanced adult devices. Although comparable child-sized devices are on the clinical horizon, understanding how to effectively translate these technologies to the pediatric population is vital. This includes exploring grasping movements that may provide the most functional benefits and techniques to control the newly available dexterity. Currently, no dexterous pediatric research platforms exist that offer open access to hardware and programming to facilitate the investigation and provision of multi-grasp function. Our objective was to deliver a child-sized multi-grasp prosthesis that may serve as a robust research platform. In anticipation of an open-source release, we performed a comprehensive set of benchtop and functional tests with common household objects to quantify the performance of our device. This work discusses and evaluates our pediatric-sized multiarticulate prosthetic hand that provides 6 degrees of actuation, weighs 177 g and was designed specifically for ease of implementation in a research or clinical-research setting. Through the benchtop and validated functional tests, the pediatric hand produced grasping forces ranging from 0.424–7.216 N and was found to be comparable to the functional capabilities of similar adult devices. As mechatronic technologies advance and multiarticulate prostheses continue to evolve, translating many of these emerging technologies may help provide children with more useful and functional prosthesis options. Effective translation will inevitably require a solid scientific foundation to inform how best to prescribe advanced prosthetic devices and control systems for children. This work begins addressing these current gaps by providing a much-needed research platform with supporting data to facilitate its use in laboratory and clinical research settings. 
    more » « less