skip to main content


Search for: All records

Award ID contains: 1734980

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A new class of neuromorphic processors promises to provide fast and power-efficient execution of spiking neural networks with on-chip synaptic plasticity. This efficiency derives in part from the fine-grained parallelism as well as event-driven communication mediated by spatially and temporally sparse spike messages. Another source of efficiency arises from the close spatial proximity between synapses and the sites where their weights are applied and updated. This proximity of compute and memory elements drastically reduces expensive data movements but imposes the constraint that only local operations can be efficiently performed, similar to constraints present in biological neural circuits. Efficient weight update operations should therefore only depend on information available locally at each synapse as non-local operations that involve copying, taking a transpose, or normalizing an entire weight matrix are not efficiently supported by present neuromorphic architectures. Moreover, spikes are typically non-negative events, which imposes additional constraints on how local weight update operations can be performed. The Locally Competitive Algorithm (LCA) is a dynamical sparse solver that uses only local computations between non-spiking leaky integrator neurons, allowing for massively parallel implementations on compatible neuromorphic architectures such as Intel's Loihi research chip. It has been previously demonstrated that non-spiking LCA can be used to learn dictionaries of convolutional kernels in an unsupervised manner from raw, unlabeled input, although only by employing non-local computation and signed non-spiking outputs. Here, we show how unsupervised dictionary learning with spiking LCA (S-LCA) can be implemented using only local computation and unsigned spike events, providing a promising strategy for constructing self-organizing neuromorphic chips. 
    more » « less
  2. The optic nerve transmits visual information to the brain as trains of discrete events, a low-power, low-bandwidth communication channel also exploited by silicon retina cameras. Extracting highfidelity visual input from retinal event trains is thus a key challenge for both computational neuroscience and neuromorphic engineering. Here, we investigate whether sparse coding can enable the reconstruction of high-fidelity images and video from retinal event trains. Our approach is analogous to compressive sensing, in which only a random subset of pixels are transmitted and the missing information is estimated via inference. We employed a variant of the Locally Competitive Algorithm to infer sparse representations from retinal event trains, using a dictionary of convolutional features optimized via stochastic gradient descent and trained in an unsupervised manner using a local Hebbian learning rule with momentum. We used an anatomically realistic retinal model with stochastic graded release from cones and bipolar cells to encode thumbnail images as spike trains arising from ON and OFF retinal ganglion cells. The spikes from each model ganglion cell were summed over a 32 msec time window, yielding a noisy rate-coded image. Analogous to how the primary visual cortex is postulated to infer features from noisy spike trains arising from the optic nerve, we inferred a higher-fidelity sparse reconstruction from the noisy rate-coded image using a convolutional dictionary trained on the original CIFAR10 database. To investigate whether a similar approachworks on non-stochastic data, we demonstrate that the same procedure can be used to reconstruct high-frequency video from the asynchronous events arising from a silicon retina camera moving through a laboratory environment. 
    more » « less