skip to main content


Search for: All records

Award ID contains: 1735505

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Natural climate variability, captured through multiple initial condition ensembles, may be comparable to the variability caused by knowledge gaps in future emissions trajectories and in the physical science basis, especially at adaptation-relevant scales and projection horizons. The relations to chaos theory, including sensitivity to initial conditions, have caused the resulting variability in projections to be viewed as the irreducible uncertainty component of climate. The multiplier effect of ensembles from emissions-trajectories, multiple-models and initial-conditions contribute to the challenge. We show that ignoring this variability results in underestimation of precipitation extremes return periods leading to maladaptation. However, we show that concatenating initial-condition ensembles results in reduction of hydroclimate uncertainty. We show how this reduced uncertainty in precipitation extremes percolates to adaptation-relevant-Depth-Duration Frequency curves. Hence, generation of additional initial condition ensembles therefore no longer needs to be viewed as an uncertainty explosion problem but as a solution that can lead to uncertainty reduction in assessment of extremes.

     
    more » « less
  2. Abstract The increased complexity of infrastructure systems has resulted in critical interdependencies between multiple networks—communication systems require electricity, while the normal functioning of the power grid relies on communication systems. These interdependencies have inspired an extensive literature on coupled multilayer networks, assuming a hard interdependence, where a component failure in one network causes failures in the other network, resulting in a cascade of failures across multiple systems. While empirical evidence of such hard failures is limited, the repair and recovery of a network requires resources typically supplied by other networks, resulting in documented interdependencies induced by the recovery process. In this work, we explore recovery coupling, capturing the dependence of the recovery of one system on the instantaneous functional state of another system. If the support networks are not functional, recovery will be slowed. Here we collected data on the recovery time of millions of power grid failures, finding evidence of universal nonlinear behavior in recovery following large perturbations. We develop a theoretical framework to address recovery coupling, predicting quantitative signatures different from the multilayer cascading failures. We then rely on controlled natural experiments to separate the role of recovery coupling from other effects like resource limitations, offering direct evidence of how recovery coupling affects a system’s functionality. 
    more » « less
  3. Abstract A chaotic dynamics is typically characterized by the emergence of strange attractors with their fractal or multifractal structure. On the other hand, chaotic synchronization is a unique emergent self-organization phenomenon in nature. Classically, synchronization was characterized in terms of macroscopic parameters, such as the spectrum of Lyapunov exponents. Recently, however, we attempted a microscopic description of synchronization, called topological synchronization , and showed that chaotic synchronization is, in fact, a continuous process that starts in low-density areas of the attractor. Here we analyze the relation between the two emergent phenomena by shifting the descriptive level of topological synchronization to account for the multifractal nature of the visited attractors. Namely, we measure the generalized dimension of the system and monitor how it changes while increasing the coupling strength. We show that during the gradual process of topological adjustment in phase space, the multifractal structures of each strange attractor of the two coupled oscillators continuously converge, taking a similar form, until complete topological synchronization ensues. According to our results, chaotic synchronization has a specific trait in various systems, from continuous systems and discrete maps to high dimensional systems: synchronization initiates from the sparse areas of the attractor, and it creates what we termed as the ‘zipper effect’, a distinctive pattern in the multifractal structure of the system that reveals the microscopic buildup of the synchronization process. Topological synchronization offers, therefore, a more detailed microscopic description of chaotic synchronization and reveals new information about the process even in cases of high mismatch parameters. 
    more » « less
  4. A longstanding tradition of research linking neighborhood disadvantage to higher rates of violence is based on the characteristics of where people reside. This Essay argues that we need to look beyond residential neighborhoods to consider flows of movement throughout the wider metropolis. Our basic premise is that a neighborhood’s well-being depends not only on its own socioeconomic conditions but also on the conditions of neighborhoods that its residents visit and are visited by—connections that form through networks of everyday urban mobility. Based on the analysis of large-scale urban-mobility data, we find that while residents of both advantaged and disadvantaged neighborhoods in Chicago travel far and wide, their relative isolation by race and class persists. Among large U.S. cities, Chicago’s level of racially segregated mobility is the second highest. Consistent with our major premise, we further show that mobility-based socioeconomic disadvantage predicts rates of violence in Chicago’s neighborhoods beyond their residence-based disadvantage and other neighborhood characteristics, including during recent years that witnessed surges in violence and other broad social changes. Racial disparities in mobility-based disadvantage are pronounced—more so than residential neighborhood disadvantage. We discuss implications of these findings for theories of neighborhood effects on crime and criminal justice contact, collective efficacy, and racial inequality. 
    more » « less
  5. Numerical models based on physics represent the state of the art in Earth system modeling and comprise our best tools for generating insights and predictions. Despite rapid growth in computational power, the perceived need for higher model resolutions overwhelms the latest generation computers, reducing the ability of modelers to generate simulations for understanding parameter sensitivities and characterizing variability and uncertainty. Thus, surrogate models are often developed to capture the essential attributes of the full-blown numerical models. Recent successes of machine learning methods, especially deep learning (DL), across many disciplines offer the possibility that complex nonlinear connectionist representations may be able to capture the underlying complex structures and nonlinear processes in Earth systems. A difficult test for DL-based emulation, which refers to function approximation of numerical models, is to understand whether they can be comparable to traditional forms of surrogate models in terms of computational efficiency while simultaneously reproducing model results in a credible manner. A DL emulation that passes this test may be expected to perform even better than simple models with respect to capturing complex processes and spatiotemporal dependencies. Here, we examine, with a case study in satellite-based remote sensing, the hypothesis that DL approaches can credibly represent the simulations from a surrogate model with comparable computational efficiency. Our results are encouraging in that the DL emulation reproduces the results with acceptable accuracy and often even faster performance. We discuss the broader implications of our results in light of the pace of improvements in high-performance implementations of DL and the growing desire for higher resolution simulations in the Earth sciences. 
    more » « less
  6. Climate-mediated changes in the spatiotemporal distribution of thermal stress can destabilize animal populations and promote extinction risk. Using quantile, spectral, and wavelet analyses of temperature projections from the latest generation of earth system models, we show that significant regional differences are expected to arise in the way that temperatures will increase over time. When integrated into empirically-parameterized mathematical models that simulate the dynamical and cumulative effects of thermal stress on the performance of 38 global ectotherm species, the projected spatiotemporal changes in temperature fluctuations are expected to give rise to complex regional changes in population abundance and stability over the course of the 21st century. However, despite their idiosyncratic effects on stability, projected temperatures universally increase extinction risk. These results show that population changes under future climate conditions may be more extensive and complex than the current literature suggests based on the statistical relationship between biological performance and average temperature. 
    more » « less
  7. Disadvantage in a neighborhood’s mobility network has a larger impact than its own economic status on COVID-19 incidence. 
    more » « less
  8. Urban air pollution is a public health challenge in low- and middle-income countries (LMICs). However, LMICs lack adequate air quality (AQ) monitoring infrastructure. A persistent challenge has been our inability to estimate AQ accurately in LMIC cities, which hinders emergency preparedness and risk mitigation. Deep learning-based models that map satellite imagery to AQ can be built for high-income countries (HICs) with adequate ground data. Here we demonstrate that a scalable approach that adapts deep transfer learning on satellite imagery for AQ can extract meaningful estimates and insights in LMIC cities based on spatiotemporal patterns learned in HIC cities. The approach is demonstrated for Accra in Ghana, Africa, with AQ patterns learned from two US cities, specifically Los Angeles and New York. 
    more » « less
  9. The El Nino Southern Oscillation (ENSO) is a semi-periodic fluctuation in sea surface temperature (SST) over the tropical central and eastern Pacific Ocean that influences interannual variability in regional hydrology across the world through long-range dependence or teleconnections. Recent research has demonstrated the value of Deep Learning (DL) methods for improving ENSO prediction as well as Complex Networks (CN) for understanding teleconnections. However, gaps in predictive understanding of ENSO-driven river flows include the black box nature of DL, the use of simple ENSO indices to describe a complex phenomenon and translating DL-based ENSO predictions to river flow predictions. Here we show that eXplainable DL (XDL) methods, based on saliency maps, can extract interpretable predictive information contained in global SST and discover novel SST information regions and dependence structures relevant for river flows which, in tandem with climate network constructions, enable improved predictive understanding. Our results reveal additional information content in global SST beyond ENSO indices, develop new understanding of how SSTs influence river flows, and generate improved river flow predictions with uncertainties. Observations, reanalysis data, and earth system model simulations are used to demonstrate the value of the XDL-CN based methods for future interannual and decadal scale climate projections. 
    more » « less