skip to main content


Search for: All records

Award ID contains: 1735587

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    High resolution and accurate rainfall information is essential to modeling and predicting hydrological processes. Crowdsourced personal weather stations (PWSs) have become increasingly popular in recent years and can provide dense spatial and temporal resolution in rainfall estimates. However, their usefulness could be limited due to less trust in crowdsourced data compared to traditional data sources. Using crowdsourced PWSs data without a robust evaluation of its trustworthiness can result in inaccurate rainfall estimates as PWSs are installed and maintained by non‐experts. In this study, we advance the Reputation System for Crowdsourced Rainfall Networks (RSCRN) to bridge this trust gap by assigning dynamic trust scores to PWSs. Based on rainfall data collected from 18 PWSs in two dense clusters in Houston, Texas, USA as a case study, we found that using RSCRN‐derived trust scores can increase the accuracy of 15‐min PWS rainfall estimates when compared to rainfall observations recorded at the city's high‐fidelity rainfall stations. Overall, RSCRN rainfall estimates improved for 77% (48 out of 62) of the analyzed storm events, with a median root‐mean‐square error (RMSE) improvement of 27.3%. Compared to an existing PWS quality control method, results showed that RSCRN improved rainfall estimates for 71% of the storm events (44 out of 62), with a median RMSE improvement of 18.7%. Using RSCRN‐derived trust scores can make the rapidly growing network of PWSs a more useful resource for hydrologic applications, greatly improving knowledge of rainfall patterns in areas with dense PWSs.

     
    more » « less
  2. Free, publicly-accessible full text available October 1, 2024
  3. Collecting, storing, and providing access to Internet of Things (IoT) data are fundamental tasks to many smart city projects. However, developing and integrating IoT systems is still a significant barrier to entry. In this work, we share insights on the development of cloud data storage and visualization tools for IoT smart city applications using flood warning as an example application. The developed system incorporates scalable, autonomous, and inexpensive features that allow users to monitor real-time environmental conditions, and to create threshold-based alert notifications. Built in Amazon Web Services (AWS), the system leverages serverless technology for sensor data backup, a relational database for data management, and a graphical user interface (GUI) for data visualizations and alerts. A RESTful API allows for easy integration with web-based development environments, such as Jupyter notebooks, for advanced data analysis. The system can ingest data from LoRaWAN sensors deployed using The Things Network (TTN). A cost analysis can support users’ planning and decision-making when deploying the system for different use cases. A proof-of-concept demonstration of the system was built with river and weather sensors deployed in a flood prone suburban watershed in the city of Charlottesville, Virginia. 
    more » « less
  4. Low-lying coastal cities across the world are increasingly seeing flooding due to climate change and accompanying sea-level rise. Many such cities rely on old and passive stormwater infrastructure which cannot cope up with the increasing flood risk. One potential solution for addressing coastal flooding is implementing active control strategies in stormwater systems. Active stormwater control relies on rule-based strategies, which is not able to manage the increasing flood risk. Model predictive control (MPC) for stormwater flood management is getting attention over the past decade. However, building physics-based models for MPC in stormwater management is cost and time prohibitive. In this paper, we develop a data-driven approach, which utilizes unstructured state-space models for system identification and predictive control implementation. We demonstrate our results using two real stormwater network configurations, one from the Norfolk, VA region and another model of Ann Arbor region, MI, respectively. Our results indicate that MPC outperforms rule-based strategies by up to 60% of the Norfolk model and up to 90% of the Ann Arbor model in flood management. 
    more » « less
  5. Low-lying coastal cities across the world are vulnerable to the combined impact of rainfall and storm tide. However, existing approaches lack the ability to model the combined effect of these flood mechanisms, especially under climate change and sea level rise (SLR). Thus, to increase flood resilience of coastal cities, modeling techniques to improve the understanding and prediction of the combined effect of these flood hazards are critical. To address this need, this study presents a modeling system for assessing the combined flood impact on coastal cities under selected future climate scenarios that leverages ocean modeling with land surface modeling capable of resolving urban drainage infrastructure within the city. The modeling approach is demonstrated in quantifying the impact of possible future climate scenarios on transportation infrastructure within Norfolk, Virginia, USA. A series of combined storm events are modeled for current (2020) and projected future (2070) climate scenarios. The results show that pluvial flooding causes a larger interruption to the transportation network compared to tidal flooding under current climate conditions. By 2070, however, tidal flooding will be the dominant flooding mechanism with even nuisance flooding expected to happen daily due to SLR. In 2070, nuisance flooding is expected to cause a 4.6% total link close time (TLC), which is more than two times that of a 50-year storm surge (1.8% TLC) in 2020. The coupled flood model was compared with a widely used but physically simplistic bathtub method to assess the difference resulting from the more complex modeling presented in this study. The results show that the bathtub method overestimated the flooded area near the shoreline by 9.5% and 3.1% for a 10-year storm surge event in 2020 and 2070, respectively, but underestimated the flooded area in the inland region by 9.0% and 4.0% for the same events. The findings demonstrate the benefit of sophisticated modeling methods compared to more simplistic bathtub approaches, in climate adaptive planning and policy in coastal communities. 
    more » « less
  6. Real-time control of stormwater systems can reduce flooding and improve water quality. Current industry real-time control strategies use simple rules based on water quantity parameters at a local scale. However, system-level control methods that also incorporate observations of water quality could provide improved control and performance. Therefore, the objective of this research is to evaluate the impact of local and system-level control approaches on flooding and sediment-related water quality in a stormwater system within the flood-prone coastal city of Norfolk, Virginia, USA. Deep reinforcement learning (RL), an emerging machine learning technique, is used to learn system-level control policies that attempt to balance flood mitigation and treatment of sediment. RL is compared to the conventional stormwater system and two methods of local-scale rule-based control: (i) industry standard predictive rule-based control with a fixed detention time and (ii) rules based on water quality observations. For the studied system, both methods of rule-based control improved water quality compared to the passive system, but increased total system flooding due to uncoordinated releases of stormwater. An RL agent learned controls that maintained target pond levels while reducing total system flooding by 4% compared to the passive system. When pre-trained from the RL agent that learned to reduce flooding, another RL agent was able to learn to decrease TSS export by an average of 52% compared to the passive system and with an average of 5% less flooding than the rule-based control methods. As the complexity of stormwater RTC implementations grows and climate change continues, system-level control approaches such as the RL used here will be needed to help mitigate flooding and protect water quality. 
    more » « less
  7. null (Ed.)
  8. Compared with capital improvement projects, real-time control of stormwater systems may be a more effective and efficient approach to address the increasing risk of flooding in urban areas. One way to automate the design process of control policies is through reinforcement learning (RL). Recently, RL methods have been applied to small stormwater systems and have demonstrated better performance over passive systems and simple rule-based strategies. However, it remains unclear how effective RL methods are for larger and more complex systems. Current RL-based control policies also suffer from poor convergence and stability, which may be due to large updates made by the underlying RL algorithm. In this study, we use the Proximal Policy Optimization (PPO) algorithm and develop control policies for a medium-sized stormwater system that can significantly mitigate flooding during large storm events. Our approach demonstrates good convergence behavior and stability, and achieves robust out-of-sample performance. 
    more » « less