skip to main content


Title: Data-Driven Model Predictive Control for Real-Time Stormwater Management
Low-lying coastal cities across the world are increasingly seeing flooding due to climate change and accompanying sea-level rise. Many such cities rely on old and passive stormwater infrastructure which cannot cope up with the increasing flood risk. One potential solution for addressing coastal flooding is implementing active control strategies in stormwater systems. Active stormwater control relies on rule-based strategies, which is not able to manage the increasing flood risk. Model predictive control (MPC) for stormwater flood management is getting attention over the past decade. However, building physics-based models for MPC in stormwater management is cost and time prohibitive. In this paper, we develop a data-driven approach, which utilizes unstructured state-space models for system identification and predictive control implementation. We demonstrate our results using two real stormwater network configurations, one from the Norfolk, VA region and another model of Ann Arbor region, MI, respectively. Our results indicate that MPC outperforms rule-based strategies by up to 60% of the Norfolk model and up to 90% of the Ann Arbor model in flood management.  more » « less
Award ID(s):
1735587
NSF-PAR ID:
10340925
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 American Control Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Flooding in coastal cities is increasing due to climate change and sea-level rise, stressing the traditional stormwater systems these communities rely on. Automated real-time control (RTC) of these systems can improve performance, and creating control policies for smart stormwater systems is an active area of study. This research explores reinforcement learning (RL) to create control policies to mitigate flood risk. RL is trained using a model of hypothetical urban catchments with a tidal boundary and two retention ponds with controllable valves. RL's performance is compared to the passive system, a model predictive control (MPC) strategy, and a rule-based control strategy (RBC). RL learns to proactively manage pond levels using current and forecast conditions and reduced flooding by 32% over the passive system. Compared to the MPC approach using a physics-based model and genetic algorithm, RL achieved nearly the same flood reduction, just 3% less than MPC, with a significant 88× speedup in runtime. Compared to RBC, RL was able to quickly learn similar control strategies and reduced flooding by an additional 19%. This research demonstrates that RL can effectively control a simple system and offers a computationally efficient method that could scale to RTC of more complex stormwater systems. 
    more » « less
  2. The active control of stormwater systems is a potential solution to increased street flooding in low-lying, low-relief coastal cities due to climate change and accompanying sea level rise. Model predictive control (MPC) has been shown to be a successful control strategy generally and as well as for managing urban drainage specifically. This research describes and demonstrates the implementation of MPC for urban drainage systems using open source software (Python and The United States Environmental Protection Agency (EPA) Storm Water Management Model (SWMM5). The system was demonstrated using a simplified use case in which an actively-controlled outlet of a detention pond is simulated. The control of the pond’s outlet influences the flood risk of a downstream node. For each step in the SWMM5 model, a series of policies for controlling the outlet are evaluated. The best policy is then selected using an evolutionary algorithm. The policies are evaluated against an objective function that penalizes primarily flooding and secondarily deviation of the detention pond level from a target level. Freely available Python libraries provide the key functionality for the MPC workflow: step-by-step running of the SWMM5 simulation, evolutionary algorithm implementation, and leveraging parallel computing. For perspective, the MPC results were compared to results from a rule-based approach and a scenario with no active control. The MPC approach produced a control policy that largely eliminated flooding (unlike the scenario with no active control) and maintained the detention pond’s water level closer to a target level (unlike the rule-based approach). 
    more » « less
  3. Real-time control of stormwater systems can reduce flooding and improve water quality. Current industry real-time control strategies use simple rules based on water quantity parameters at a local scale. However, system-level control methods that also incorporate observations of water quality could provide improved control and performance. Therefore, the objective of this research is to evaluate the impact of local and system-level control approaches on flooding and sediment-related water quality in a stormwater system within the flood-prone coastal city of Norfolk, Virginia, USA. Deep reinforcement learning (RL), an emerging machine learning technique, is used to learn system-level control policies that attempt to balance flood mitigation and treatment of sediment. RL is compared to the conventional stormwater system and two methods of local-scale rule-based control: (i) industry standard predictive rule-based control with a fixed detention time and (ii) rules based on water quality observations. For the studied system, both methods of rule-based control improved water quality compared to the passive system, but increased total system flooding due to uncoordinated releases of stormwater. An RL agent learned controls that maintained target pond levels while reducing total system flooding by 4% compared to the passive system. When pre-trained from the RL agent that learned to reduce flooding, another RL agent was able to learn to decrease TSS export by an average of 52% compared to the passive system and with an average of 5% less flooding than the rule-based control methods. As the complexity of stormwater RTC implementations grows and climate change continues, system-level control approaches such as the RL used here will be needed to help mitigate flooding and protect water quality. 
    more » « less
  4. Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management. 
    more » « less
  5. Flooding risk results from complex interactions between hydrological hazards (e.g., riverine inundation during periods of heavy rainfall), exposure, vulnerability (e.g., the potential for structural damage or loss of life), and resilience (how well we recover, learn from, and adapt to past floods). Building on recent coupled conceptualizations of these complex interactions, we characterize human–flood interactions (collective memory and risk-enduring attitude) at a more comprehensive scale than has been attempted to date across 50 US metropolitan statistical areas with a sociohydrologic (SH) model calibrated with accessible local data (historical records of annual peak streamflow, flood insurance loss claims, active insurance policy records, and population density). A cluster analysis on calibrated SH model parameter sets for metropolitan areas identified two dominant behaviors: 1) “risk-enduring” cities with lower flooding defenses and longer memory of past flood loss events and 2) “risk-averse” cities with higher flooding defenses and reduced memory of past flooding. These divergent behaviors correlated with differences in local stream flashiness indices (i.e., the frequency and rapidity of daily changes in streamflow), maximum dam heights, and the proportion of White to non-White residents in US metropolitan areas. Risk-averse cities tended to exist within regions characterized by flashier streamflow conditions, larger dams, and larger proportions of White residents. Our research supports the development of SH models in urban metropolitan areas and the design of risk management strategies that consider both demographically heterogeneous populations, changing flood defenses, and temporal changes in community risk perceptions and tolerance.

     
    more » « less