skip to main content

Search for: All records

Award ID contains: 1735971

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Forcespinning technique was used to fabricate sub-micron size polycaprolactone (PCL) fibers. Forcespinning method uses centrifugal forces for the generation of fibers unlike the electrospinning method which uses electrostatic force. PCL has been extensively used as scaffolds for cell regeneration, substrates for tissue engineering and in drug delivery systems. The aim of this study is to qualitatively analyze the force spun fiber mats and investigate the effect of the spinneret rotational speed on the fiber morphology, thermal and mechanical properties. The extracted fibers were characterized by scanning electron microscopy differential scanning calorimetry, tensile testing and dynamic mechanical analysis. The results showed that higher rotational speeds produced uniform fibers with less number of beads. The crystallinity of the fibers decreased with increase in rotational speeds. The Young’s modulus of the forcespun fibers was found to be in the range of 3.5 to 6 MPa. Storage and loss moduli decreased with the increase in the fiber diameter. The fibers collected at farther distance from spinneret exhibited optimal mechanical properties compared to the fibers collected at shorter distances. This study will aid in extracting fibers with uniform geometries and lower beads to achieve the desired nanofiber drug release properties.

  2. Free, publicly-accessible full text available April 10, 2023
  3. Free, publicly-accessible full text available March 1, 2023
  4. Owing to its robustness, ability to achieve complex geometries, and ease of use, 3D printing has become one of the noteworthy applications in the field of engineering. Polycarbonate has become a thermoplastic of interest due to its excellent mechanical and optical properties. Especially when infused with nanosilica, polycarbonate becomes a potential candidate for 3D printing with enhanced properties. Polycarbonate nanocomposite filaments infused with AEROSIL (nanosilica) have been melt extruded with various filler loadings of 0.5, 1, and 3 wt% and are then 3D printed. The thermal analysis of the filaments has shown that thermal stability of the filaments increases with increase in filler loading. Tensile tests have shown that addition of nanosilica have enhanced the mechanical properties of the filaments as well as 3D printed films. The addition of silica in low concentrations exhibit higher transmittance of UV light, as silica restricts the mobility of polycarbonate. Despite 3D printing causing voids in bulk materials, silica at low concentration (0.5 and 1 wt%) can improve the mechanical and optical properties. These improvements are promising for applications in thin film interfaces and the automotive industry.
  5. Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings.